Bài 20. Định lí Viète và ứng dụng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Không giải phương trình, hãy tính tổng và tích các nghiệm (nếu có) của các phương trình sau:

а) x2 – 12x + 8 = 0;

b) 2x2 + 11x – 5 =0;

c) 3x2 – 10 = 0;

d) x2 – x + 3 = 0.

datcoder
21 tháng 10 lúc 22:42

a) Ta có: \(\Delta ' = {\left( { - 6} \right)^2} - 8.1 = 28 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = 12;{x_1}.{x_2} = 8\)

b) Ta có: \(\Delta  = {11^2} - 4.2.\left( { - 5} \right) = 161 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = \frac{{ - 11}}{2};{x_1}.{x_2} = \frac{{ - 5}}{2}\)

c) Ta có: \(\Delta ' = {0^2} - 3.\left( { - 10} \right) = 30 > 0\) nên phương trình có hai nghiệm phân biệt.

Theo định lí Viète ta có: \({x_1} + {x_2} = 0;{x_1}.{x_2} = \frac{{ - 10}}{3}\)

d) Ta có: \(\Delta  = {\left( { - 1} \right)^2} - 4.1.3 =  - 11 < 0\) nên phương trình vô nghiệm.