1. Tập xác định: \(D = \mathbb{R}\)
2. Sự biến thiên:
Ta có: \(y' = - 6{x^2} + 6x - 5 = - 6{\left( {x - \frac{1}{2}} \right)^2} - \frac{7}{2} \le - \frac{7}{2}\) với mọi \(x \in \mathbb{R}\)
Hàm số nghịch biến trên \(\left( { - \infty ; + \infty } \right)\).
Hàm số không có cực trị.
Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - 2{x^3} + 3{x^2} - 5x} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 2 + \frac{3}{x} - \frac{3}{{{x^2}}}} \right)} \right] = + \infty \)
\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - 2{x^3} + 3{x^2} - 5x} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 2 + \frac{3}{x} - \frac{3}{{{x^2}}}} \right)} \right] = - \infty \)
Bảng biến thiên:
3. Đồ thị:
Giao điểm của đồ thị hàm số \(y = - 2{x^3} + 3{x^2} - 5x\) với trục tung là \(\left( {0;0} \right)\).
Ta có: \( - 2{x^3} + 3{x^2} - 5x = 0 \Leftrightarrow - x\left( {2{x^2} - 3x + 5} \right) = 0 \Leftrightarrow x = 0\). Do đó, giao điểm của đồ thị hàm số với trục hoành là điểm (0; 0).
Điểm \(\left( {1; - 4} \right)\) thuộc đồ thị hàm số \(y = - 2{x^3} + 3{x^2} - 5x\).
Đồ thị hàm số có tâm đối xứng là điểm \(\left( {\frac{1}{2}; - 2} \right)\).