Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bài tập cuối chương I

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Khảo sát sự biến thiên và vẽ đồ thị của các hàm số sau:
a) \(y = - {x^3} + 6{x^2} - 9x + 12\);
b) \(y = \frac{{2x - 1}}{{x + 1}}\);
c) \(y = \frac{{{x^2} - 2x}}{{x - 1}}\).

Hà Quang Minh
26 tháng 3 2024 lúc 5:02

a) 1. Tập xác định: \(D = \mathbb{R}\)

2. Sự biến thiên:

Ta có: \(y' = - 3{x^2} + 12x - 9,y' = 0 \Leftrightarrow - 3{x^2} + 12x - 9 = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.\)

Trên khoảng \(\left( {1;3} \right)\), \(y' > 0\) nên hàm số đồng biến. Trên khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {3; + \infty } \right)\), \(y' < 0\) nên hàm số nghịch biến trên mỗi khoảng đó.

Hàm số đạt cực đại tại \(x = 3\), giá trị cực đại . Hàm số đạt cực tiểu tại \(x = 1\), giá trị cực tiểu \({y_{CT}} = 8\)

Giới hạn tại vô cực: \(\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to - \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = + \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \left( { - {x^3} + 6{x^2} - 9x + 12} \right) = \mathop {\lim }\limits_{x \to + \infty } \left[ {{x^3}\left( { - 1 + \frac{6}{x} - \frac{9}{{{x^2}}} + \frac{{12}}{{{x^3}}}} \right)} \right] = - \infty \)

Bảng biến thiên:

3. Đồ thị:

loading...

Giao điểm của đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) với trục tung là (0; 12).

Đồ thị hàm số \(y = - {x^3} + 6{x^2} - 9x + 12\) đi qua các điểm (1; 8); (3; 12); (4; 8).

Đồ thị hàm số có tâm đối xứng là điểm (2; 10).

b) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ { - 1} \right\}\)

2. Sự biến thiên:

\(y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0\forall x \ne - 1\)

Hàm số đồng biến trên khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( { - 1; + \infty } \right)\).

Hàm số không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{2x - 1}}{{x + 1}} = 2;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{2x - 1}}{{x + 1}} = 2\)
\(\mathop {\lim }\limits_{x \to - {1^ - }} y = \mathop {\lim }\limits_{x \to - {1^ - }} \frac{{2x - 1}}{{x + 1}} = + \infty ;\mathop {\lim }\limits_{x \to - {1^ + }} y = \mathop {\lim }\limits_{x \to - {1^ + }} \frac{{2x - 1}}{{x + 1}} = - \infty \)

Do đó, đồ thị hàm số nhận đường thẳng \(x = - 1\) làm tiệm cận đứng và đường thẳng \(y = 2\) làm tiệm cận ngang.

Bảng biến thiên:

3. Đồ thị: Giao điểm của đồ thị hàm số với trục tung là \(\left( {0; - 1} \right)\).

\(y = 0 \Leftrightarrow \frac{{2x - 1}}{{x + 1}} = 0 \Leftrightarrow x = \frac{1}{2}\)

Giao điểm của đồ thị hàm số với trục hoành là điểm \(\left( {\frac{1}{2};0} \right)\).

Đồ thị hàm số nhận giao điểm I(-1; 2) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.

c) 1. Tập xác định của hàm số: \(\mathbb{R}\backslash \left\{ 1 \right\}\)

2. Sự biến thiên:

Ta có: \(y = \frac{{{x^2} - 2x}}{{x - 1}} = x - 1 - \frac{1}{{x - 1}}\)

\(y' = \frac{{\left( {2x - 2} \right)\left( {x - 1} \right) - \left( {{x^2} - 2x} \right)}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{x^2} - 2x + 2}}{{{{\left( {x - 1} \right)}^2}}} = \frac{{{{\left( {x - 1} \right)}^2} + 1}}{{{{\left( {x - 1} \right)}^2}}} > 0\;\forall x \ne 1\)

Do đó, hàm số đồng biến trong khoảng \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Hàm số không có cực trị.

Giới hạn: \(\mathop {\lim }\limits_{x \to + \infty } y = \mathop {\lim }\limits_{x \to + \infty } \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to - \infty } y = \mathop {\lim }\limits_{x \to - \infty } \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)
\(\mathop {\lim }\limits_{x \to {1^ - }} y = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} - 2x}}{{x - 1}} = + \infty ;\mathop {\lim }\limits_{x \to {1^ + }} y = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} - 2x}}{{x - 1}} = - \infty \)

\(\mathop {\lim }\limits_{x \to + \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to + \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to + \infty } - \frac{1}{{x - 1}} = 0\)

\(\mathop {\lim }\limits_{x \to - \infty } \left[ {y - \left( {x - 1} \right)} \right] = \mathop {\lim }\limits_{x \to - \infty } \left( {x - 1 - \frac{1}{{x - 1}} - \left( {x - 1} \right)} \right) = \mathop {\lim }\limits_{x \to - \infty } - \frac{1}{{x - 1}} = 0\)

Do đó, đồ thị hàm số nhận đường thẳng \(x = 1\) làm tiệm cận đứng và đường thẳng \(y = x - 1\) làm tiệm cận xiên.

Bảng biến thiên:

3. Đồ thị:

 

Giao điểm của đồ thị hàm số với trục tung là (0; 0).

\(y = 0 \Leftrightarrow \frac{{{x^2} - 2x}}{{x - 1}} = 0 \Leftrightarrow x = 0\) hoặc \(x = 2\)

Đồ thị hàm số giao với trục hoành tại các điểm (0; 0) và (2; 0)

Đồ thị hàm số nhận giao điểm I(1; 0) của hai đường tiệm cận làm tâm đối xứng và nhận hai đường phân giác của góc tạo bởi hai đường tiệm cận này làm các trục đối xứng.