Đặt \(x=4sint\Rightarrow\left\{{}\begin{matrix}dx=4cost.dt\\x=0\Rightarrow t=0\\x=2\sqrt{2}\Rightarrow t=\dfrac{\pi}{4}\end{matrix}\right.\)
\(I=\int\limits^{\dfrac{\pi}{4}}_04.cost.4cost.dt=16\int\limits^{\dfrac{\pi}{4}}_0cos^2tdt=8\int\limits^{\dfrac{\pi}{4}}_0\left(1+cos2t\right)dt\)
\(=8\left(x+\dfrac{1}{2}sin2t\right)|^{\dfrac{\pi}{4}}_0=...\)