Em biến đổi dx thành d(2x+1) sau đó dùng tích phân cơ bản là ok
Em biến đổi dx thành d(2x+1) sau đó dùng tích phân cơ bản là ok
1, I = \(\int\limits^1_0\dfrac{2x+1}{x^2+x+1}dx\)
2,\(\int\limits^{\dfrac{1}{2}}_0\dfrac{5xdx}{\left(1-x^2\right)^3}\)
3, \(\int\limits^1_0\dfrac{2x}{\left(x+1\right)^3}dx\)
4, \(\int\limits^1_0\dfrac{4x-2}{\left(x^2+1\right)\left(x+2\right)}dx\)
5, \(\int\limits^1_0\dfrac{x^2dx}{x^6-9}\)
6, \(\int\limits^2_1\dfrac{2x-1}{x^2\left(x+1\right)}dx\)
Áp dụng phương pháp tính tích phân, hãy tính các tích phân sau :
a) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos2xdx\)
b) \(\int\limits^{\ln2}_0xe^{-2x}dx\)
c) \(\int\limits^1_0\ln\left(2x+1\right)dx\)
d) \(\int\limits^3_2\left|\ln\left(x-1\right)-\ln\left(x+1\right)\right|dx\)
e) \(\int\limits^2_{\dfrac{1}{2}}\left(1+x-\dfrac{1}{x}\right)e^{x+\dfrac{1}{x}}dx\)
g) \(\int\limits^{\dfrac{\pi}{2}}_0x\cos x\sin^2xdx\)
h) \(\int\limits^1_0\dfrac{xe^x}{\left(1+x\right)^2}dx\)
i) \(\int\limits^e_1\dfrac{1+x\ln x}{x}e^xdx\)
Tính các tích phân sau :
a) \(\int\limits^1_0\left(y^3+3y^2-2\right)dy\)
b) \(\int\limits^4_1\left(t+\dfrac{1}{\sqrt{t}}-\dfrac{1}{t^2}\right)dt\)
c) \(\int\limits^{\dfrac{\pi}{2}}_0\left(2\cos x-\sin2x\right)dx\)
d) \(\int\limits^1_0\left(3^s-2^s\right)^2ds\)
e) \(\int\limits^{\dfrac{\pi}{3}}_0\cos3xdx+\int\limits^{\dfrac{3\pi}{2}}_0\cos3xdx+\int\limits^{\dfrac{5\pi}{2}}_{\dfrac{3\pi}{2}}\cos3xdx\)
g) \(\int\limits^3_0\left|x^2-x-2\right|dx\)
h) \(\int\limits^{\dfrac{5\pi}{4}}_{\pi}\dfrac{\sin x-\cos x}{\sqrt{1+\sin2x}}dx\)
i) \(\int\limits^4_0\dfrac{4x-1}{\sqrt{2x+1}+2}dx\)
Tính cách tích phân sau :
a) \(\int\limits^1_0\left(1+3x\right)^{\dfrac{3}{2}}dx\)
b) \(\int\limits^{\dfrac{1}{2}}_0\dfrac{x^3-1}{x^2-1}dx\)
c) \(\int\limits^2_1\dfrac{ln\left(1+x\right)}{x^2}dx\)
chứng minh:
\(\int\limits^1_0\dfrac{ln\left(x+\sqrt{1-x^2}\right)}{x}dx=\dfrac{3}{4}\int\limits\dfrac{ln\left(1+x\right)}{x}^1_0dx\)
Tính các tích phân sau
1.I=\(\int\limits^{\frac{\Pi}{4}}_0\) (x+1)sin2xdx
2.I=\(\int\limits^2_1\frac{x^2+3x+1}{x^2+x}dx\)
3.I=\(\int\limits^2_1\frac{x^2-1}{x^2}lnxdx\)
4. I=\(\int\limits^1_0x\sqrt{2-x^2}dx\)
5.I=\(\int\limits^1_0\frac{\left(x+1\right)^2}{x^2+1}dx\)
6. I=\(\int\limits^5_1\frac{dx}{1+\sqrt{2x-1}}\)
7. I=\(\int\limits^3_1\frac{1+ln\left(x+1\right)}{x^2}dx\)
8.I=\(\int\limits^1_0\frac{x^3}{x^4+3x^2+2}dx\)
9. I=\(\int\limits^{\frac{\Pi}{4}}_0x\left(1+sin2x\right)dx\)
10. I=\(\int\limits^3_0\frac{x}{\sqrt{x+1}}dx\)
Sử dụng phương pháp tính tích phân từng phần, hãy tính :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\sin x.dx\)
b) \(\int\limits^e_1x^2lnxdx\)
c) \(\int\limits^1_0ln\left(1+x\right)dx\)
d) \(\int\limits^1_0\left(x^2-2x-1\right)e^{-x}dx\)
Sử dụng phương pháp đổi biến số, hãy tính :
a) \(\int\limits^3_0\dfrac{x^2}{\left(1+x\right)^{\dfrac{3}{2}}}dx\) (đặt \(u=x+1\))
b) \(\int\limits^1_0\sqrt{1-x^2}dx\) (đặt \(x=\sin t\))
c) \(\int\limits^1_0\dfrac{e^x\left(1+x\right)}{1+xe^x}dx\) (đặt \(u=1+xe^x\))
d) \(\int\limits^{\dfrac{a}{2}}_0\dfrac{1}{\sqrt{a^2-x^2}}dx\) (\(a>0\)) (đặt \(x=a\sin t\))
Tính các tích phân sau đây :
a) \(\int\limits^{\dfrac{\pi}{2}}_0\left(x+1\right)\cos\left(x+\dfrac{\pi}{2}\right)dx\)
b) \(\int\limits^1_0\dfrac{x^2+x+1}{x+1}\log_2\left(x+1\right)dx\)
c) \(\int\limits^1_{\dfrac{1}{2}}\dfrac{x^2-1}{x^4+1}dx\) (đặt \(t=x+\dfrac{1}{x}\) )
d) \(\int\limits^{\dfrac{\pi}{2}}_0\dfrac{\sin3xdx}{3+4\sin x-\cos2x}dx\)