Bài 2. Phép tính lôgarit

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Hoạt động 3

Cho \(m = {2^7};\,n = {2^3}\)

a)    Tính \({\log _2}\left( {mn} \right);{\log _2}m + {\log _2}n\) và so sánh các kết quả đó

b)    Tính \({\log _2}\left( {\frac{m}{n}} \right);{\log _2}m - {\log _2}n\) và so sánh các kết quả đó

 

Nguyễn Lê Phước Thịnh
14 tháng 8 2023 lúc 13:29

a: \(log_2\left(mn\right)=log_2\left(2^7\cdot2^3\right)=7+3=10\)

 \(log_2m+log_2n=log_22^7+log_22^3=7+3=10\)

=>\(log_2\left(mn\right)=log_2m+log_2n\)

b: \(log_2\left(\dfrac{m}{n}\right)=log_2\left(\dfrac{2^7}{2^3}\right)=7-3=4\)

\(log_2m-log_2n=log_22^7-log_22^3=7-3=4\)

=>\(log_2\left(\dfrac{m}{n}\right)=log_2m-log_2n\)

datcoder
14 tháng 8 2023 lúc 20:24

a) \(\log_2\left(mn\right)=\log_2\left(2^7.2^3\right)=\log_22^{7+3}=\log_22^{10}=10.\log_22=10.1=10\)

\(\log_2m+\log_2n=\log_22^7+\log_22^3=7\log_22+3\log_22=7.1+3.1=7+3=10\)

b) \(\log_2\left(\dfrac{m}{n}\right)=\log_2\dfrac{2^7}{2^3}=\log_22^4=4.\log_22=4.1=4\)

\(\log_2m-\log_2n=\log_22^7-\log_22^3=7.\log_22-3\log_22=7.1-3.1=4\)


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Xem chi tiết
Buddy
Xem chi tiết
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết