cho tam giác abc cân tại a. gọi m là trung điểm của cạnh đáy bc, n là lình chiếu vuông góc của m trên cạnh ac và o là trung điểm của mn. chứng minh rằng
1, tam giác amc đồng dạng với tam giác mnc
2, am.nc=om.bc
3, ao vuông góc bn
Cho tam giác ABC vuông tại A, đường cao AH ( H thuộc BC)
a) Cm: tam giác HAC đồng dạng tam giác ABC
b) CHo AB = 6cm, AC= 8cm. Tính Ah, BC
c) Gọi E, F lần lượt là trung điểm của BH, AH. Gọi G là giao điểm của CF và AE. Tính tỉ số diện tích của tam giác AGF và tam giác CGE
Cho tam giác ABC vuông cân tại A. Trên cạnh AC lấy M bất kì (M khác A,C) . Trên cạnh AB lấy E sao cho AE=CM. Gọi O là trung điểm cạnh BC
a, CM tam giác OEM vuông cân
b, Đường thẳng qua A và song song với ME, cắt tia BM tại N. Chứng minh CN _|_ AC
c, Gọi H là giao điểm của OM và AN. Chứng minh rằng tích AH.AN không phụ thuộc vào vị trí M trên cạnh AC
Cho tam giác ABC vuông tại A (AB<AC). Gọi I là trung điểm của cạnh BC. Qua I vẽ IM vuông góc với AB tại M và IN vuông góc với AC tại N. Gọi D là điểm đối xứng của I qua N.
a) Tứ giác ADCI là hình gì?
b) Đường thẳng BN cắt DC tại K. Chứng minh rằng DK/DC=1/3
c) Cho AB=12cm, BC=20cm. tính diện tích hình ADCI.
Cho tam giác ABC vuông tại A, AH là đường cao. D, E lần lượt là trung điểm của các đoạn thẳng AB, AH. Đường thẳng vuông góc AB taị D cắt CE ở F. Chứng minh rằng tam giác BCF vuông
Cho hình thang vuông ABCD (AD<AB, góc A=góc B=90độ), AB=a (a>0). Gọi O là trung điểm của AB.Trên cạnh AD lấy điểm E sao cho E nằm giữa A và D.Qua O kẻ đường thẳng vuông góc với OE cắt cạnh BC tại F.
a) CM tam giác OAE đồng dạng với tam giác FBO.Tính tích AE.BF theo a.
b) Gọi M là hình chiếu của O trên EF, H là hình chiếu của M trên AB.
CM rằng AE=EM và BE đi qua trung điểm của MH.
c) Tìm vị trí của điểm E trên AD để diện tích tứ giác ABFE nhỏ nhất.