Hiệp định Genève 1954 về chấm dứt chiến tranh ở Đông Dương đã chọn vĩ tuyến 17 độ Bắc, dọc sông Bến Hải-tỉnh Quảng Trị làm khu vực phi quân sự phân định giới tuyến Bắc-Nam cho Việt Nam. Và dòng sông Bến Hải chạy dọc vĩ tuyến 17 này đã trở thành nơi chia cắt đất nước suốt hơn 20 năm chiến tranh VN. Em hãy tính độ dài mỗi vòng kinh tuyến và độ dài cung kinh tuyến từ vĩ tuyến 17 đến xích đạo. Biết bán kính trái đất 6400km
Cho 2 đường tròn (O;R) và (O'R') tiếp xúc ngoài ở A. Kẻ tiếp tuyến chung ngoài CD. Kẻ tiếp tuyến chung trong Ax và Ax cắt CD ở I. Gọi giao AC và OI là M, của AD và O'I là N.
a) Góc CAD bằng bao nhiêu?
b) Tứ giác IMAN là hình gì? Vì sao?
c) Tính CD biết R=9 cm, R'=4 cm.
d) Chứng minh CD là tiếp tuyến của đường tròn đường kính OO'.
Cho tam giác vuông, biết tỉ số giữa các cạnh góc vuông là \(\dfrac{5}{12}\), cạnh huyền là 26. Tính độ dài các cạnh góc vuông và hình chiếu các cạnh góc vuông trên cạnh huyền.
Cho hình thang ABCD có A=D=90 độ và 2 đường chéo vuông góc với nhau. Gọi AB=m, CD=n. Tìm diện tích bé nhất của hình thang ABCD
Cho đường tròn (0,r) và điểm M nằm ngoài đường tròn . Vẽ 2 tiếp tuyến MA , MB của đường tròn ( AB là tiếp điểm )a, Chứng minh rằng 4 điểm O,A,M,B nằm trên 1 đường trònb, Biết OA = 6 cm , AM = 8cm . Tính số đo góc AMO và độ dài đoạn thẳng ABc, Gọi giao điểm của OM và (O;r) là K . Từ K kẻ KP⊥AM (P∈AM ) ; kẻ KQ ⊥BM ( Q∈BM ) . Chứng minh rằng PQ // AB
Cho tam giác ABC có: góc B = 90 độ + góc C , nội tiếp đường tròn O. Qua B kẻ đường thẳng vuông góc với BC cắt đường tròn O tại I, tiếp tuyến của đường tròn O kẻ từ A cắt BC tại H. Chứng minh :
a) AH vuông góc BC
b) AB^2 + AC^2 = 4R^2
Cho 2 đường thẳng (d1):y=x+1 và (d2):y=-x+3
A, Gọi M là giao điểm của (d1),(d2).Tìm toạ độ giao điểm M (bằng phép toán )
B, Viết phương trình đường thẳng (y=ax+b). Biết rằng đường thẳng này có tung độ góc bằng 2 và cắt trục hoành tại điểm có hoành độ bằng -4
C, Cho đường thẳng (d3):y=(2m+1)x+n+1 ( với m ≠ -1/2). Với giá trị nào của m và n thì đường thẳng (d3)và (d2) trùng nhau.
Cho tam giác ABC cân tại A và góc BAC = 150 độ. Dựng tam giác AMB và tam giác ANC sao cho các tia AM, AN nằm tròn góc BAC với góc ABM = góc ACN = 90 độ, góc MAB = 30 độ, góc NAC = 60 độ. Trên MN lấy D sao cho ND = 3MD. BD cắt AM và AN lần lượt tại K và E. F là giao điểm của BC và AN. Chứng minh rằng : a) Tam giác NCE cân b) KF//CD
cho 2 đường tròn (O;R) và (O'R') tiếp xúc ngoài tại A,góc vuông xoy thay đổi luôn đi qua A,cắt đường tròn (O;R) vad (O'R') tại B và C.Gọi H là hình chiếu của A trên BC.Xác định vị trí cả B,C để AH có độ dài lớn nhất