tham khảo cách làm
Gọi I = AC ∩ MN ⇒ I là trung điểm của OC, ta có:
- Ta có: MN// BD mà BD ⊥ (SAC)(cmt) ⇒ MN ⊥ (SAC).
- Trong (SAC) kẻ AH ⊥ SI (H ∈ SI) ⇒ MN ⊥ AH.
- Ta có:
- Xét tam giác vuông SAI ta có:
tham khảo cách làm
Gọi I = AC ∩ MN ⇒ I là trung điểm của OC, ta có:
- Ta có: MN// BD mà BD ⊥ (SAC)(cmt) ⇒ MN ⊥ (SAC).
- Trong (SAC) kẻ AH ⊥ SI (H ∈ SI) ⇒ MN ⊥ AH.
- Ta có:
- Xét tam giác vuông SAI ta có:
cho hình chóp SABCD có đáy là hình vuông cạnh a các mặt đều là những tam giác đều cạnh a. tính góc giữa
a) (SAB) và (ABCD)
b) (SCD) và (SBC)
1, Cho hình chóp SABCD có đáy ABCD là hình vuông . Mặt bên SAB là tam giác đều nằm trong mặt phẳng vuông góc với (ABCD).CÓ mấy mặt phẳng vuông góc với (sab)
2, Cho hình chóp SABCD có đáy ABCD là hình thoi . Mặt phẳng (SAC) vuông góc (ABCD) . mệnh đề nào đúng
A. (SAC) vuông góc (SBD)
b. (SBD) vuông góc (ABCD)
C.(BCD) vuông góc (ACD)
D.(SAB) vuông góc (SAD)
3, Cho tứ diện ABCD có AB=AC=AD và tam giác BCD vuông ở B . Trong các mặt phẳng sau , cặp nào vuông góc với nhau
A.(ABC) và (ABD) B.(ABD) và (BCD)
C. (BCD) và (ACD) D.(ACD) và (ABC)
4. tứ diện abcd có bcd là tam giác vuông ở b . (ABC) vuông góc (BCD) . các cạnh của tứ diện cạnh nào là đường cao
5. Cho hình chóp SABC có đáy abc là tam giác vuông ở b với AB=3a,BC=4a. biết SA vuông góc với đáy , góc giữa (SBC) và (ABC)=60 ĐỘ . TÍNH diện tích tam giác sbc
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, SA=AD=DC=a, AB=2a; SA vuông góc voi đáy. E trung điểm AB.
a) chứng minh các mặt bên chóp là tam giác vuông
b) tính góc giữa (SBC) và (ABCD); SC và (SAB)
c) tính khoảng cách từ A đến mp(SBC) và khoảng cách giữa 2 đt SC và AC?
Cho hình chóp S.ABC, đáy là tam giác vuông tại C. Tam giác SAC là tam giác đều cạnh a nằm trong mặt phẳng vuông góc với đáy, cạnh AB bằng a căn 3. Gọi H là trung điểm AC. Chứng minh: a. (SBC) vuông góc (SAC) b. Tính góc giữa (SAB) và (ABC)
Cho hình chóp tam giác đều S.ABC đỉnh S, có độ dài cạnh đáy bằng a. Gọi M và N lần lượt là trung điểm của các cạnh SB và SC. Biết mặt phẳng ( AMN ) vuông góc với mặt phẳng ( SBC ). Tính diện tích tam giác AMN theo a.
Cho hình chóp SABC có đáy ABC là tam giác vuông cân tại B , SA vuông góc với ABC ,SA = a√3 . Xác định và tính góc giữa hai mặt phẳng SBC và ABC
Cho hình chóp SABCD có SA vuông góc với (ABCD), SA=a\(\sqrt{2}\), đáy abcd là hình thang vuông tại A và D với AB=2a, AD=DC=a. Tính góc giữa (SBC) và (ABCD)
Cho hình chóp SABCD có SA vuông góc với (ABCD), SA=a√22, đáy abcd là hình thang vuông tại A và D với AB=2a, AD=DC=a. Tính góc giữa (SBC) và (SCD)
Cho hình chóp S.ABCD có đáy ABCD là một hình thoi cạnh a và SA=SB=SC=a. Chứng minh rằng :
a) Mặt phẳng (ABCD) vuông góc với mặt phẳng (SBD)
b) Tam giác SBD là tam giác vuông
Hình chóp S.ABCD có đáy là hình thang vuông ABCD vuông tại A và D, có AB = 2a, AD = DC = a, có cạnh SA vuông góc với mặt phẳng (ABCD) và SA = a
a) Chứng minh mặt phẳng (SAD) vuông góc với mặt phẳng (SDC), mặt phẳng (SAC) vuông góc với mặt phẳng (SCB)
b) Gọi \(\varphi\) là góc giữa hai mặt phẳng (SBC) và (ABCD), tính \(\tan\varphi\)
c) Gọi \(\left(\alpha\right)\) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC). Hãy xác định \(\left(\alpha\right)\) và xác định thiết diện của hình chóp S.ABCD với \(\left(\alpha\right)\)