\(A=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+.....+\frac{1}{99\times100}\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{99}-\frac{1}{100}\)
\(A=1-\frac{1}{100}\)
\(A=\frac{99}{100}\)
Chúc bạn học tốt
A= \(\frac{1}{1.2}\)+\(\frac{1}{2.3}\)+\(\frac{1}{3.4}\)+...+\(\frac{1}{99.100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{99}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)-\(\frac{1}{100}\)
A= \(\frac{1}{1}\)+\(\frac{-1}{100}\)
A= \(\frac{100}{100}\)+\(\frac{-1}{100}\)
A= \(\frac{99}{100}\)
Vậy A= \(\frac{99}{100}\)
A= 1/1.2+1/2.3+1/3.4+...+1/99.100
A=1-1/2+1/2-1/3+1/3-1/4+...+1/99-1/100
A= 1-1/100
A= 99/100