Ta có \(5a+6b+10c=7a-2a+7b-b+7c+3c\)
\(=7a+7b+7c-\left(2a+b-3c\right)=7\left(a+b+c\right)-\left(2a+b-3c\right)\)
Mà \(\left\{{}\begin{matrix}7\left(a+b+c\right)⋮7\\2a+b-3c⋮7\end{matrix}\right.\) \(\Rightarrow7\left(a+b+c\right)-\left(2a+b-3c\right)⋮7\)
Hay \(5a+6b+10c⋮7\) (đpcm)