Hàm số ở câu a) \(y = 9{x^2} + 5x + 4\) là hàm số bậc hai với \(a = 9,b = 5,c = 4\)
Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa \({x^3}\)
Hàm số ở câu d) \(y = 5{x^2} + \sqrt x + 2\) không phải là hàm số bậc hai vì chứa \(\sqrt x \)
Hàm số ở câu a) \(y = 9{x^2} + 5x + 4\) là hàm số bậc hai với \(a = 9,b = 5,c = 4\)
Hàm số ở câu b), c) không phải là hàm số bậc hai vì chứa \({x^3}\)
Hàm số ở câu d) \(y = 5{x^2} + \sqrt x + 2\) không phải là hàm số bậc hai vì chứa \(\sqrt x \)
Khai triển biểu thức của các hàm số sau và sắp xếp theo thứ tự lũy thừa của x giảm dần (nếu có thể). Hàm số nào có lũy thừa bậc cao nhất của x là bậc hai?
a) \(y = 2x(x - 3)\)
b) \(y = x({x^2} + 2) - 5\)
c) \(y = - 5(x + 1)(x - 4)\)
Tìm điều kiện của m để mỗi hàm số sau là hàm số bậc hai:
a) \(y = m{x^4} + (m + 1){x^2} + x + 3\)
b) \(y = (m - 2){x^3} + (m - 1){x^2} + 5\)
Vẽ đồ thị các hàm số sau:
a) \(y = 2{x^2} + 4x - 1\)
b) \(y = - {x^2} + 2x + 3\)
c) \(y = - 3{x^2} + 6x\)
d) \(y = 2{x^2} - 5\)
Hãy xác định đúng đồ thị của mỗi hàm số sau trên Hình 12.
\(\begin{array}{l}({P_1}):y = - 2{x^2} - 4x + 2;\\({P_2}):y = 3{x^2} - 6x + 5;\\({P_3}):y = 4{x^2} - 8x + 7;\\({P_4}):y = - 3{x^2} - 6x - 1.\end{array}\)
Cho hàm số bậc hai \(y = f(x) = a{x^2} + bx + c\) có \(f(0) = 1,f(1) = 2,f(2) = 5.\)
a) Hãy xác định giá trị của các hệ số \(a,b\) và \(c.\)
b) Xác định tập giá trị và khoảng biến thiên của hàm số.
a) Xét hàm số\(y = f(x) = {x^2} - 8x + 19 = {(x - 4)^2} + 3\) có bảng giá trị:
\(x\) | 2 | 3 | 4 | 5 | 6 |
\(f(x)\) | 7 | 4 | 3 | 4 | 7 |
Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 1).
Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y = {x^2}\) trên Hình 1.
b) Tương tự xét hàm số \(y = g(x) = - {x^2} + 8x - 13 = - {(x - 4)^2} + 3\) có bảng giá trị:
\(x\) | 2 | 3 | 4 | 5 | 6 |
\(f(x)\) | -1 | 2 | 3 | 2 | -1 |
Trên mặt phẳng tọa độ, ta có các điểm \((x;f(x))\) với x thuộc bảng giá trị đã cho (hình 2).
Hãy vẽ đường cong đi qua các điểm A, B, S, C, D và nêu nhận xét về hình dạng của đường cong này so với đồ thị hàm số \(y = - {x^2}\) trên Hình 2.
Lập bảng biến thiên của hàm số \(y = {x^2} + 2x + 3.\) Hàm số này có giá trị lớn nhất hay giá trị nhỏ nhất? Tìm giá trị đó.
Vẽ đồ thị hàm số \(y = {x^2} - 4x + 3\) rồi so sánh đồ thị hàm số này với đồ thị hàm số trong Ví dụ 2z. Nếu nhận xét về hai đồ thị này.
Cho hàm số \(y = 2{x^2} + x + m\). Hãy xác định giá trị của m để hàm số đạt giá trị nhỏ nhất bằng 5.