Luyện tập chung trang 73

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Buddy

Gọi Ou và Ov lần lượt là hai tia phân giác của hai góc kề bù xOy và x’Oy; A là một điểm khác O trên tia Ox. Gọi B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov. Hỏi tứ giác OBAC là hình gì? Vì sao?

Vì Ou, Ov lần lượt là tia phân giác của \(\widehat {xOy};\widehat {x'Oy}\) nên \(\widehat {{O_1}} = \widehat {{O_2}};\widehat {{O_3}} = \widehat {{O_4}}\)

Mà \(\widehat {xOy} + \widehat {x'Oy} = {180^o}\) (vì \(\widehat {xOy};\widehat {x'Oy}\) là hai góc kề bù).

Hay \(\widehat {{O_1}} + \widehat {{O_2}} + \widehat {{O_3}} + \widehat {{O_4}} = {180^o}\)

Suy ra \(2\widehat {{O_2}} + 2\widehat {{O_3}} = {180^o}\)

Do đó \(\widehat {{O_2}} + \widehat {{O_3}} = {90^o}\) hay \(\widehat {uOv} = {90^o}\) suy ra \(\widehat {uOC} = {90^o}\) hay \(\widehat {BOC} = {90^o}\)

Vì B và C là chân đường vuông góc hạ từ A lần lượt xuống đường thẳng chứa Ou và Ov

Nên \(\widehat {ABO} = {90^o};\widehat {AC{\rm{O}}} = {90^o}\)

Tứ giác OBAC có \(\widehat {AC{\rm{O}}} + \widehat {BOC} + \widehat {ABO} + \widehat {BAC} = {360^o}\)

\({90^o} + {90^o} + {90^o} + \widehat {BAC} = {360^o}\)

270°+\(\widehat {BAC} = {360^o}\)

Suy ra \(\widehat {BAC}\)=360°−270°=90o

Xét tứ giác OBAC có \(\widehat {BOC} = {90^o};\widehat {ABO} = {90^o};\widehat {AC{\rm{O}}} = {90^o}\)

Vậy tứ giác OBAC là hình chữ nhật.


Các câu hỏi tương tự
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết
Buddy
Xem chi tiết