Gọi d là đồ thị của hàm số y = f(x) = 6 – 2x. Kí hiệu S1 là diện tích hình phẳng giới hạn bởi d, trục hoành và trục tung, S2 là diện tích hình phẳng giới hạn bởi d, trục hoành và đường thẳng x = 5 (Hình 1).
a) Tính S1 và so sánh với \(\int\limits^5_3f\left(x\right)dx\).
b) Tính S2 và so sánh với \(\int\limits^5_3f\left(x\right)dx\).
c) So sánh \(\int\limits^5_0\left|f\left(x\right)\right|dx\) với S1 + S2.
a) Tam giác \(OAB\) vuông tại \(O\), ta có \(OA = 6\), \(OB = 3\). Diện tích tam giác \(OAB\) là:
\({S_1} = \frac{{OA.OB}}{2} = \frac{{6.3}}{2} = 9\).
Ta có \(\int\limits_0^3 {f\left( x \right)dx} = \int\limits_0^3 {\left( {6 - 2x} \right)dx} = \left. {\left( {6x - {x^2}} \right)} \right|_0^3 = 9 - 0 = 9\).
Như vậy \({S_1} = \int\limits_0^3 {f\left( x \right)dx} \)
b) Tam giác \(CBM\) vuông tại \(M\), ta có \(MB = 2\), \(MC = 4\). Diện tích tam giác \(CBM\) là:
\({S_2} = \frac{{MB.MC}}{2} = \frac{{2.4}}{2} = 4\).
Ta có \(\int\limits_0^3 {f\left( x \right)dx} = \int\limits_3^5 {\left( {6 - 2x} \right)dx} = \left. {\left( {6x - {x^2}} \right)} \right|_3^5 = 5 - 9 = - 4\).
Như vậy \({S_2} = - \int\limits_3^5 {f\left( x \right)dx} \)
c) Ta có:
\(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} = \int\limits_0^5 {\left| {6 - 2x} \right|dx} = \int\limits_0^3 {\left| {6 - 2x} \right|dx} + \int\limits_3^5 {\left| {6 - 2x} \right|dx} = \int\limits_0^3 {\left( {6 - 2x} \right)dx} + \int\limits_3^5 {\left( {2x - 6} \right)dx} \)
\( = \left. {\left( {6x - {x^2}} \right)} \right|_0^3 + \left. {\left( {{x^2} - 6x} \right)} \right|_3^5 = \left( {9 - 0} \right) + \left[ {\left( { - 5} \right) - \left( { - 9} \right)} \right] = 13\)
Như vậy \(\int\limits_0^5 {\left| {f\left( x \right)} \right|dx} = 13 = {S_1} + {S_2}\).