Cho \(\Delta\)ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi M là trung điểm của BC, đường thẳng qua H vuông góc với MH. Cắt cạnh AB tại P, cắt AC tại Q.
a) CMR: \(\Delta\)AHP đồng dạng \(\Delta\)CMH, \(\Delta\)QHA đồng dạng \(\Delta\)HMB.
b) CM : HP=HQ
Cho tam giác ABC có ba góc nhọn. Các đường cao AM, BN, CK cắt nhau tại H (M ∈ BC, N ∈ AC, K ∈ AB). Gọi A1, B1, C1 lần lượt là điểm đối xứng với H qua BC, AC, AB. Chứng minh rằng:
a) ΔBHK đồng dạng với ΔCHN.
b) ΔKHN đồng dạng với ΔBHC.
c) BH.BN + CH.CK = BC2.
d) Tổng \(\dfrac{AA_1}{AM}+\dfrac{BB_1}{BN}+\dfrac{CC_1}{CK}\) có giá trị không đổi.
Cho ΔABC vuông tại A có BC = 5cm. Kẻ phân giác BD (D thuộc AC).
a) Tính AC, AD và DC. Biết AB = 3cm
b) Kẻ đường cao AH của ΔABC. Chứng minh ΔABC đồng dạng ΔHAC
c) Tính diện tích của ΔHAC. Biết AB = 3cm
d) Chứng minh: BA.BC > BD^2
e) Gọi F, E lần lượt là hình chiếu của H trên AB, AC. Xác định vị trí của điểm A để diện tích của hình chữ nhật AFHE lớn nhất.
Cho ΔABC nhọn có hai đường cao BD và CE.
a) Chứng minh: ΔABD ∽ ΔACE
b) Chứng minh: ΔADE ∽ ΔABC
c) Gọi H là giao điểm của BD và CE, K là giao điểm của AH và BC.Chứng minh rằng: AH ⊥ BC và CH.CE=BC.CK
d) Chứng minh: BH.BD+CH.CE=\(BC^2\)
Bài 1; cho ΔABC vuông tại A.trong đó AB=8cm; AC=6cm; AD là tia phân giác của góc A(D∈BC)
a) Tính tỉ số DB/DC
b) Kẻ đường cao AH (H∈BC) CMR: ΔAHB đồng dạng với ΔCHA và AB2/BH=AC2/CH
Cho ΔABC có các góc đều nhọn. Hai đường cao BE, CF cắt nhau tại H. Chứng minh:
a. ΔAEF đồng dạng với ΔABC
b. BH.BE + CH.CF = BC\(^2\)
Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng Cho tam giác ABC nhọn có H là trực tâm Gọi D E lần lượt là giao điểm của BH với AC ,CH với AB Chứng minh rằng tam giác AEC và ADB là hai tam giác đồng dạng
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEG = 90
Cho tam giác ABC có 3 góc nhọn. Các đường cao lần lượt là AD,BE,CF cắt nhau tại H. Gọi I là trung điểm của AH; J là trung điểm của BC. Chứng minh: a) tam giác AEH đồng dạng với tam giác ADC và AE.AC=AH.AD b) AE.AC=AF.AB và tam giác AEF đồng dạng tam giác ABC c) tam giác HFB đồng dạng với tam giác HEC và HE.HB=HF.HC d) EH là tia phân giác của góc DEF e) BF.BA + CE.CA=BC2 f) HD/AD + HE/BE + HF/CF = 1 g) góc IEj = 90