Ta có:
\(C=\frac{2017}{2018}+\frac{2018}{2019}+\frac{2019}{2017}=1-\frac{1}{2018}+1-\frac{1}{2019}+1+\frac{2}{2017}=3+\left(\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}\right)\)Mà ta có:
\(\frac{2}{2017}=\frac{1}{2017}+\frac{1}{2017}>\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow\frac{2}{2017}-\frac{1}{2018}-\frac{1}{2019}>0\)
\(\Rightarrow C>3\)