\(A=\frac{1}{1.2}+...+\frac{1}{2013.2014}+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
\(A=\frac{1}{1.2}+...+\frac{1}{2013.2014}+\frac{1}{2015.2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Tìm số tự nhiên n ( nếu có ) biết:
a) 1+2+3+4+...+n = 1275
b) (n+1) . (n+2) . (n+3) . ... . (n+100)
c) (1.2 + 2.3 + 3.4 + 4.5 +...+ 19.20) : ( 133.2) =n
Giúp mình nhé !
Cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+......+\frac{1}{2013.2014}\)
B=\(\frac{1}{1008.2014}+\frac{1}{1009.2013}+\frac{1}{1010.2012}+......+\frac{1}{2014.1008}\)
Chứng tỏ rằng:\(\frac{A}{B}\) là số nguyên
tính tổng 100 số hạng đầu tiên của các dãy sau:
a)\(\frac{1}{1.2},\frac{1}{2.3},\frac{1}{3.4},\frac{1}{4.5},...\)
b)\(\frac{1}{6},\frac{1}{66},\frac{1}{176},\frac{1}{336},...\)
Help me ! Tính :
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
giải rõ ràng, nhá ! Mik làm cuối cùng nó ra là \(\frac{9899}{9900}\)nhưng chắc o phải đâu vì mấy đứa kia học thêm còn tui kết quả lạ lại ko học thêm nữa ! Thôi ! Help me nhá !
^_^
tính giá trị của biểu thức
a) A=\(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) + ...+\(\frac{1}{99.100}\)
b) B= \(\frac{2}{1.3}\)+\(\frac{2}{3.5}\) + \(\frac{2}{5.7}\)+\(\frac{2}{7.9}\) +...+\(\frac{2}{97.99}\)
6
cho A=\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{49.50}\)
B=\(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{49}+\frac{1}{50}\)
C=\(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{48}+\frac{1}{50}\)
CMR:A=B-2C
giúp mk với
A = \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
dấu . là dấu nhân nha theo thcs
Bài 1 : tính
B = 1.2+2.3+3.4+....+50
C = 12+22+32 +...+ 502
Giúp mình nha mấy bạn
Chứng minh: \(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+...+\frac{1}{2015.2016}=\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\).