ĐKXĐ: \(\left\{{}\begin{matrix}x\ge\dfrac{2}{3}\\y\ge-\dfrac{1}{3}\end{matrix}\right.\)
Ta có: \(4\sqrt{3y+1}=2.2.\sqrt{3y+1}\le2^2+3y+1=3y+5\)
\(\Rightarrow x^2+7\le3y+5\Rightarrow x^2-3y+2\le0\) (1)
Lại có: \(2\sqrt{3x-2}=2.1.\sqrt{3x-2}\le1^2+3x-2=3x-1\)
\(\Rightarrow y^2+xy\le3x-1\Rightarrow y^2+xy-3x+1\le0\) (2)
Cộng vế (1) và (2):
\(\Rightarrow x^2+xy+y^2-3x-3y+3\le0\)
\(\Rightarrow\left(x^2+\dfrac{y^2}{4}+\dfrac{9}{4}+xy-3x-\dfrac{3y}{2}\right)+\dfrac{3}{4}\left(y^2-2y+1\right)\le0\)
\(\Rightarrow\left(x+\dfrac{y}{2}-\dfrac{3}{2}\right)^2+\dfrac{3}{4}\left(y-1\right)^2\le0\)
\(\Rightarrow\left\{{}\begin{matrix}x+\dfrac{y}{2}-\dfrac{3}{2}=0\\y-1=0\end{matrix}\right.\) \(\Rightarrow x=y=1\)
Thay vào hệ thấy thỏa mãn, vậy hệ có nghiệm duy nhất \(\left(x;y\right)=\left(1;1\right)\)