a: \(\Leftrightarrow2x^2-6x+x-3=5x+4-2\left(x^2-4\right)\)
\(\Leftrightarrow2x^2-5x-3=5x+4-2x^2+8\)
\(\Leftrightarrow4x^2-10x-9=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot4\cdot\left(-9\right)=100+144=244>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{10-\sqrt{244}}{8}=\dfrac{5-\sqrt{61}}{4}\\x_2=\dfrac{5+\sqrt{61}}{4}\end{matrix}\right.\)
b: \(\Leftrightarrow3x-4x^2-4x-1=4x^2-\left(2x^2+2x-x-1\right)\)
\(\Leftrightarrow-4x^2-x-1-4x^2+2x^2+x-1=0\)
\(\Leftrightarrow-6x^2-2=0\)
hay \(x\in\varnothing\)
c: \(\dfrac{3x-1}{x-1}-\dfrac{2x+5}{x+3}=1-\dfrac{4}{x^2+2x-3}\)
\(\Leftrightarrow\left(3x-1\right)\left(x+3\right)-\left(2x+5\right)\left(x-1\right)=x^2+2x-3-4\)
\(\Leftrightarrow3x^2+9x-x-3-2x^2+2x-5x+5=x^2+2x-7\)
=>5x+2=2x-7
=>3x=-9
hay x=-3(loại)