Nhân cả tử và mẫu của phân thức \(\frac{x}{{x - 1}}\) với -1 ta được phân thức \(\frac{{ - x}}{{1 - x}} \Rightarrow \frac{{ - x}}{{1 - x}} = \frac{x}{{x - 1}}\)
Nhân cả tử và mẫu của phân thức \(\frac{x}{{x - 1}}\) với -1 ta được phân thức \(\frac{{ - x}}{{1 - x}} \Rightarrow \frac{{ - x}}{{1 - x}} = \frac{x}{{x - 1}}\)
Dùng tính chất cơ bản của phân thức, giải thích vì sao các kết luận sau đúng.
\(a)\frac{{{{\left( {x - 2} \right)}^2}}}{{{x^2} - 2}} = \frac{{{{\left( {x - 2} \right)}^2}}}{2}\)
\(b)\frac{{1 - x}}{{ - 5{\rm{x}} - 1}} = \frac{{x - 1}}{{5{\rm{x}} - 1}}\)
Tìm a sao cho hai phân thức sau bằng nhau:
\(\frac{{5{\rm{x}}}}{{x + 1}}\) và \(\frac{{ax\left( {x - 1} \right)}}{{\left( {1 - x} \right)\left( {x + 1} \right)}}\)
Tìm a sao cho hai phân thức sau bằng nhau: \(\frac{{{\rm{ - a}}{{\rm{x}}^2}{\rm{ - ax}}}}{{{x^2} - 1}}\) và \(\frac{{3{\rm{x}}}}{{x - 1}}\)
Quy đồng mẫu thức các phân thức sau:
a) \(\frac{1}{{x + 2}};\frac{{x + 1}}{{{x^2} - 4{\rm{x}} + 4}};\frac{5}{{2 - x}}\)
b) \(\frac{1}{{3{\rm{x}} + 3y}};\frac{{2{\rm{x}}}}{{{x^2} - {y^2}}};\frac{{{x^2} - xy + {y^2}}}{{{x^2} - 2{\rm{x}}y + {y^2}}}\)
Tròn: hai phân thức \(\frac{5}{{x - 1}}\) và \(\frac{x}{{1 - x}}\) có MTC là x – 1
Vuông: Không đúng, MTC là (x – 1)(1 – x)
Theo em, bạn nào chọn MTC hợp lí hơn? Vì sao?
Quy đồng mẫu thức các phân thức sau:
a) \(\frac{1}{{{x^3} - 8}}\) và \(\frac{3}{{4 - 2{\rm{x}}}}\)
b) \(\frac{x}{{{x^2} - 1}}\) và \(\frac{1}{{{x^2} + 2{\rm{x}} + 1}}\)
Rút gọn các phân thức sau:
\(a)\frac{{5{\rm{x}} + 10}}{{25{{\rm{x}}^2} + 50}}\)
\(b)\frac{{45{\rm{x}}\left( {3 - x} \right)}}{{15{\rm{x}}{{\left( {x - 3} \right)}^2}}}\)
\(c)\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}}\)
Rút gọn các phân thức sau:
\(a)\frac{{5{\rm{x}} + 10}}{{25{{\rm{x}}^2} + 50}}\)
\(b)\frac{{45{\rm{x}}\left( {3 - x} \right)}}{{15{\rm{x}}{{\left( {x - 3} \right)}^2}}}\)
\(c)\frac{{{{\left( {{x^2} - 1} \right)}^2}}}{{\left( {x + 1} \right)\left( {{x^3} + 1} \right)}}\)
Quy đồng mẫu thức hai phân thức \(\frac{1}{{3{{\rm{x}}^2} - 3}}\) và \(\frac{1}{{{x^3} - 1}}\)