g) \(\left\{{}\begin{matrix}x-1\ge0\\2-\sqrt{x-1}\ge0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\\sqrt{x-1}\le2\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x\ge1\\-4\le x-1\le4\end{matrix}\right.\)
\(\Leftrightarrow1\le x\le5\)
h) \(\left\{{}\begin{matrix}\dfrac{2x-4}{5-x}\ge0\\5-x\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}\left\{{}\begin{matrix}2x-4\ge0\\5-x>0\end{matrix}\right.\\\left\{{}\begin{matrix}2x-4\le0\\5-x< 0\end{matrix}\right.\end{matrix}\right.\\x\ne5\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}5>x\ge2\left(tm\right)\\5< x\le2\left(vl\right)\end{matrix}\right.\\x\ne5\end{matrix}\right.\)
\(\Leftrightarrow5>x\ge2\)
i) \(x^2-8x-9\ge0\)\(\Leftrightarrow\left(x-4\right)^2-25\ge0\Leftrightarrow\left(x-4\right)^2\ge25\)
\(\Leftrightarrow-5\ge x-4\ge5\)\(\Leftrightarrow-1\ge x\ge9\)
j) \(2x-x^2>0\)
\(\Leftrightarrow\left(x-1\right)^2< 1\)
\(\Leftrightarrow-1< x-1< 1\Leftrightarrow0< x< 2\)
a: ĐKXĐ: \(2\le x\le4\)
b: ĐKXĐ: x>0
c: ĐKXĐ: \(x< \dfrac{1}{3}\)
g: ĐKXĐ: \(1\le x\le4\)
h: ĐKXĐ: \(2\le x< 5\)
i: ĐKXĐ: \(\left[{}\begin{matrix}x\ge9\\x\le-1\end{matrix}\right.\)
\(0< x< 2\)