1 bài thôi nhé, tui còn phải xem World Cup :vv
\(\sqrt{x^4-4x+4}=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-6\sqrt{20}}}}\)
\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\sqrt{20-2\cdot\sqrt{20}\cdot3+9}}\)
\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{3-\left(\sqrt{20}-3\right)}\)
\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{6-2\sqrt{5}}\)
\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}\)
\(\Leftrightarrow x^4-4x+4=\sqrt{5}-\sqrt{5}+1\)
\(\Leftrightarrow x^4-4x+3=0\)
\(\Leftrightarrow x^4+2x^3+3x^2-2x^3-4x^2-6x+x^2+2x+3=0\)
\(\Leftrightarrow x^2\left(x^2+2x+3\right)-2x\left(x^2+2x+3\right)+\left(x^2+2x+3\right)=0\)
\(\Leftrightarrow\left(x^2+2x+3\right)\left(x^2-2x+1\right)=0\)
\(\Leftrightarrow\left(x-1\right)^2\left(x^2+2x+3\right)=0\)
Vì: \(x^2+2x+3=\left(x^2+2x+1\right)+2=\left(x+1\right)^2+2\ge2>0\)
=> \(\left(x-1\right)^2=0\Leftrightarrow x-1=0\Leftrightarrow x=1\) (thỏa mãn)
Vậy pt có nghiệm x = 1
p/s: đkxđ là x thuộc R nên tui k ghi vào :v