\(a,\left(9x^2-4\right)\left(x+1\right)=\left(3x+2\right)\left(x^2-1\right)\)
\(\Leftrightarrow\left(3x-2\right)\left(3x+2\right)\left(x+1\right)-\left(3x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(3x-2-x+1\right)=0\)
\(\Leftrightarrow\left(3x+2\right)\left(x+1\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+2=0\\x+1=0\\2x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{2}{3}\\x=-1\\x=\dfrac{1}{2}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{-\dfrac{2}{3};-1;\dfrac{1}{2}\right\}\)
\(b,\left(x-1\right)^2-1+x^2=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(1-x\right)^2-\left(1-x^2\right)=\left(1-x\right)\left(x+3\right)\)
\(\Leftrightarrow\left(1-x\right)^2-\left(1-x\right)\left(1+x\right)-\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(1-x-1-x-x-3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(-3x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}1-x=0\\-3x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-1\right\}\)
\(c,\left(x^2-1\right)\left(x+2\right)\left(x-3\right)=\left(x-1\right)\left(x^2-4\right)\left(x+5\right)\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x+2\right)\left(x-3\right)-\left(x-1\right)\left(x+2\right)\left(x-2\right)\left(x+5\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left[\left(x+1\right)\left(x-3\right)-\left(x-2\right)\left(x+5\right)\right]=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(x^2-2x-3-x^2-3x+10\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+2\right)\left(-5x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+2=0\\-5x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-2\\x=\dfrac{7}{5}\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;-2;\dfrac{7}{5}\right\}\)
\(d,x^4+x^3+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^3+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+1=0\\x^3+1=0\end{matrix}\right.\)
\(\Leftrightarrow x=-1\)
Vậy phương trình có nghiệm duy nhất x = -1
\(e,x^3-7x+6=0\)
\(\Leftrightarrow x^3-4x-3x+6=0\)
\(\Leftrightarrow x\left(x^2-4\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+2x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+3x-x-3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+3\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+3=0\\x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\\x=1\end{matrix}\right.\)
Vậy tập nghiệm của phương trình là \(S=\left\{1;2;-3\right\}\)
\(f,x^4-4x^3+12x-9=0\)
\(\Leftrightarrow\left(x^4-9\right)-\left(4x^3-12x\right)=0\)
\(\Leftrightarrow\left(x^2-3\right)\left(x^2+3\right)-4x\left(x^2+3\right)=0\)
\(\Leftrightarrow\left(x^2+3\right)\left(x^2-3-4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+3>0\forall x\\x^2-4x-3>0\forall x\end{matrix}\right.\)
Vậy phương trình vô nghiệm
\(g,x^5-5x^3+4x=0\)
\(\Leftrightarrow x\left(x^4-5x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^4-4x^2-x^2+4\right)=0\)
\(\Leftrightarrow x\left(x^2-4\right)\left(x^2-1\right)=0\)
\(\Leftrightarrow x\left(x-2\right)\left(x+2\right)\left(x-1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\x+2=0\\x-1=0\\x+1=0\end{matrix}\right.\) hoặc x = 0
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-2\\x=1\\x=-1\end{matrix}\right.\) hoặc x =0
Vậy tập nghiệm của pt \(S=\left\{0;1;-1;2;-2\right\}\)
\(h,x^4-4x^3+3x^2+4x-4=0\)
\(\Leftrightarrow x^4-4x^3+4x^2-x^2+4x-4=0\)
\(\Leftrightarrow\left(x^4-x^2\right)-\left(4x^3-4x\right)+\left(4x^2-4\right)=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-4x\left(x^2-1\right)+4\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x^2-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x-2\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\\left(x-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=2\end{matrix}\right.\)
Vậy tập nghiệm của pt là \(S=\left\{1;-1;2\right\}\)