b.
\(\left(x^2+1\right)^2=5-x\sqrt{2x^2+4x}\)
\(\Leftrightarrow x^4+2x^2-4+x\sqrt{2x^2+4x}=0\)
Đặt \(x\sqrt{2x^2+4x}=t\Rightarrow t^2=x^2\left(2x^2+4x\right)=2\left(x^4+2x^2\right)\)
Pt trở thành:
\(\dfrac{t^2}{2}-4+t=0\)
\(\Leftrightarrow t^2+2t-8=0\Rightarrow\left[{}\begin{matrix}t=2\\t=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x\sqrt{2x^2+4x}=2\left(x>0\right)\\x\sqrt{2x^2+4x}=-4\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^4+2x^2-2=0\left(x>0\right)\\x^4+2x^2-8=0\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\sqrt{\sqrt{3}-1}\\x=-\sqrt{2}\end{matrix}\right.\)
a.
ĐKXĐ: \(x\ne0\)
\(\Leftrightarrow\dfrac{9}{x^2}+2+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
\(\Leftrightarrow\dfrac{2x^2+9}{x^2}+\dfrac{2x}{\sqrt{2x^2+9}}=3\)
Đặt \(\dfrac{x}{\sqrt{2x^2+9}}=t\Rightarrow\dfrac{2x^2+9}{x^2}=\dfrac{1}{t^2}\)
Pt trở thành:
\(\dfrac{1}{t^2}+2t=3\)
\(\Rightarrow2t^3-3t^2+1=0\)
\(\Leftrightarrow\left(t-1\right)^2\left(2t+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}t=1\\t=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{x}{\sqrt{2x^2+9}}=1\left(x>0\right)\\\dfrac{x}{\sqrt{2x^2+9}}=-\dfrac{1}{2}\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2=2x^2+9\left(vô-nghiệm\right)\\4x^2=2x^2+9\left(x< 0\right)\end{matrix}\right.\)
\(\Leftrightarrow x=-\dfrac{3\sqrt{2}}{2}\)
Kiểm tra lại vế trái đề bài câu b