a)⇔(2x+1)(2x+1)/(2x-1)(2x+1)-(2x-1)(2x-1)/(2x-1)(2x+1)=8/(2x-1)(2x+1)
⇔(2x+1)^2-(2x-1)^2=8
⇔[(2x+1)-(2x-1)][(2x+1)(2x-1)]=8
⇔2.4x=8
⇔x=1.S={1}
a: \(\dfrac{2x+1}{2x-1}-\dfrac{2x-1}{2x+1}=\dfrac{8}{4x^2-1}\)
=>(2x+1)^2-(2x-1)^2=8
=>4x^2+4x+1-4x^2+4x-1=8
=>8x=8
=>x=1
b: \(\dfrac{x+1}{x-1}-\dfrac{x-1}{x+1}=3x\cdot\left(1-\dfrac{x-1}{x+1}\right)\)
=>\(\dfrac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{x+1-x+1}{x+1}\)
=>\(\dfrac{4x}{\left(x-1\right)\left(x+1\right)}=3x\cdot\dfrac{2}{x+1}\)
=>4x=6x(x-1)
=>6x^2-6x-4x=0
=>6x^2-10x=0
=>2x(3x-5)=0
=>x=0 hoặc x=5/3