Phương trình đã cho tương đương với :
\(\left(2^{2^x}-2^{x+1}\right)+\left(3^{2^x}-3^{x+1}\right)=x+1-2^x\)
Ta xét các trường hợp sau :
* Nếu \(2^x>x+1\) thì \(2^{2^x}-2^{x+1}>0;3^{2^x}-3^{x+1}>0;x+1-2^x< 0\) nên phương trình đã cho không thỏa mãn.
* Nếu \(2^x< x+1\) thì \(2^{2^x}-2^{x+1}< 0;3^{2^x}-3^{x+1}< 0;x+1-2^x>0\) nên phương trình đã cho không thỏa mãn.
* Nếu \(2^x=x+1\) thì phương trình đã cho thỏa mãn và khi đó nghiệm của nó cũng là nghiệm của \(2^x=x+1\)
Xét hàm số \(f\left(t\right)=2^t-\left(t+1\right)\) ta thấy \(f'\left(t\right)=2^t.\ln2-1;f"\left(t\right)=2^t\left(\ln2\right)^2>0\) nên phương trình có không quá 2 nghiệm phân biệt
Ta lại thấy \(f\left(0\right)=f\left(1\right)=0\) nên phương trình \(f\left(t\right)=0\) có đúng 2 nghiệm là 0 và 1
Vậy phương trình đã cho có 2 nghiệm là \(x=0;x=1\)