Giải hệ phương trình:
\(\left\{{}\begin{matrix}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{matrix}\right.\)
giải hệ phương trình a)\(\left\{{}\begin{matrix}2\left(x+1\right)-3\left(y-2\right)=5\\-4\left(x-2\right)+5\left(y-3\right)=-1\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}8\left(x-3\right)-3\left(y+1\right)=-2\\3\left(x+2\right)-2\left(1-y\right)=5\end{matrix}\right.\)
Help me ~~~
Giải hệ phương trình: \(\left\{{}\begin{matrix}\frac{1}{1+\left(x-y\right)^2}=z+4\\\sqrt{z+3}+2x=8\end{matrix}\right.\)
Giải hệ phương trình :
\(\left\{{}\begin{matrix}x-y^2-yz-z=0\\x-y-y^2-z^2=0\\x+y-y^3-z=0\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+2z=4\\2x-y+3x=6\\x-3y+4z=7\end{matrix}\right.\)
\(\left\{{}\begin{matrix}x+y+z=23\\y+z+t=31\\z+t+x=27\\t+x+y=33\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=\dfrac{8}{3}\\\dfrac{yz}{y+z}=\dfrac{12}{5}\\\dfrac{xz}{x+z}=\dfrac{24}{7}\end{matrix}\right.\)
Giải theo cách lớp 9 nhé. Cảm ơn mn
Giải hệ phương trình sau bằng cách cộng hệ số
1) \(\left\{{}\begin{matrix}x-y=5\\2x+y=11\end{matrix}\right.\)
2) \(\left\{{}\begin{matrix}3x+2y=1\\3x+y=2\end{matrix}\right.\)
3) \(\left\{{}\begin{matrix}x-y=2\\3x+2y=11\end{matrix}\right.\)
Giải hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{xy}{x+y}=\dfrac{2}{3}\\\dfrac{yz}{y+z}=\dfrac{6}{5}\\\dfrac{zx}{z+x}=\dfrac{3}{4}\end{matrix}\right.\).
Giải hệ phương trình \(\left\{{}\begin{matrix}3\left|x-1\right|+2\left(x-y\right)=4\\4\left|x-1\right|-\left(x-y\right)=9\end{matrix}\right.\)
(mink đag cần gấp)
Giải hệ phương trình sau:
\(\left\{{}\begin{matrix}\left(\sqrt{3}-\sqrt{2}\right)x+y=\sqrt{2}\\x+\left(\sqrt{3}+\sqrt{2}\right)y=\sqrt{6}\end{matrix}\right.\)