\(\left\{{}\begin{matrix}x^2+y^2+x+y=8\left(1\right)\\x^2-3y^2+2xy-x+5y=0\left(2\right)\end{matrix}\right.\)
Phương trình (2) <=> \(x^2+x\cdot\left(2y-1\right)-3y-3y^2+5y-2=0\)
Coi phương trình là phương trình bậc 2 ẩn x
Ta có : \(\Delta=\left(2y-1\right)^2-4\left(-3y^2+5y-2\right)=\left(4y-3\right)^2\ge0\)
=> Phương trình có 2 nghiệm :
\(\left[{}\begin{matrix}x=-3y+2\\x=y-1\end{matrix}\right.\)
+) x = -3y + 2
Thay vào (1) ta được :
\(\left(2-3y\right)^2+y^2+2-3y+y=8\)
\(5y^2-7y-1=0\)
\(\Delta=69>0\)
=> Phương trình 2 nghiệm
\(\left[{}\begin{matrix}y=\dfrac{7+\sqrt{69}}{10}\\y=\dfrac{7-\sqrt{69}}{10}\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1+3\sqrt{69}}{10}\\x=\dfrac{3\sqrt{69}-1}{10}\end{matrix}\right.\)
+) x = y - 1
Thay vào (1) , ta được :
\(\left(y-1\right)^2+y^2+y-1+y=8\)
\(2y^2=8\)
\(\Leftrightarrow\left[{}\begin{matrix}y=2\\y=-2\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-3\end{matrix}\right.\)
Vậy ....