Bài 4:
a) tam giác ABC vuông tại A nên theo định lí pytago
\(BC^2=AB^2+AC^2=15^2+20^2=625\Rightarrow BC=\sqrt{625}=25cm\)
b)theo câu a) ta có \(\dfrac{BH}{AB}=\dfrac{AB}{BC}hay\dfrac{BH}{15}=\dfrac{15}{25}\Rightarrow BH=\dfrac{15\cdot15}{25}=9cm\)
CH=BC-BH=25-9=16cm
c)ta có \(S_{ABH}=\dfrac{1}{2}AH\cdot BH=\dfrac{1}{2}12\cdot9=54cm^2\)
\(S_{ABC}=\dfrac{1}{2}\cdot AB\cdot AC=\dfrac{1}{2}15\cdot20=150cm^2\\ S_{AMC}=\dfrac{1}{2}S_{ABC}=\dfrac{1}{2}\cdot150=75cm^2\\ S_{AHM}=S_{ABC}-S_{ABH}-S_{AMC}=150-54-75=21cm^2\)
Vậy SAHM =21 cm2

