Bài 8.9.10 của câu 14 hay 15 bạn?
Câu 15:
1: Ta có: \(\dfrac{1}{1-\sqrt{2}}-\dfrac{1}{1+\sqrt{2}}\)
\(=\dfrac{1+\sqrt{2}-1+\sqrt{2}}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=-2\sqrt{2}\)
2: Ta có: \(\dfrac{1}{\sqrt{5}+1}+\dfrac{1}{\sqrt{5}-1}\)
\(=\dfrac{\sqrt{5}-1+\sqrt{5}+1}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}}{4}=\dfrac{\sqrt{5}}{2}\)
Câu 14:
8: Ta có: \(\dfrac{\sqrt{x}-3}{\sqrt{x}-2}-\dfrac{2\sqrt{x}-1}{\sqrt{x}-1}+\dfrac{x-2}{x-3\sqrt{x}+2}\)
\(=\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}-\dfrac{\left(2\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}+\dfrac{x-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)
\(=\dfrac{x-4\sqrt{x}+3-2x+4\sqrt{x}+\sqrt{x}-2+x-2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{\sqrt{x}-1}{\left(\sqrt{x}-2\right)\left(\sqrt{x}-1\right)}\)
\(=\dfrac{1}{\sqrt{x}-2}\)
9: Ta có: \(\dfrac{3\sqrt{x}+2}{2\sqrt{x}-1}+\dfrac{\sqrt{x}-1}{\sqrt{x}+4}-\dfrac{x-6\sqrt{x}+5}{2x-7\sqrt{x}-4}\)
\(=\dfrac{\left(3\sqrt{x}+2\right)\left(\sqrt{x}+4\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}+\dfrac{\left(\sqrt{x}-1\right)\left(2\sqrt{x}-1\right)}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}-\dfrac{x-6\sqrt{x}+5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\dfrac{3x+12\sqrt{x}+2\sqrt{x}+8+2x-\sqrt{x}-2\sqrt{x}+1-x+6\sqrt{x}-5}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
\(=\dfrac{4x+20\sqrt{x}+4}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+4\right)}\)
Câu 14:
10: Ta có: \(\dfrac{\sqrt{x}+4}{1-7\sqrt{x}}+\dfrac{\sqrt{x}-2}{\sqrt{x}+1}+\dfrac{24\sqrt{x}}{7x-6\sqrt{x}-1}\)
\(=\dfrac{-\left(\sqrt{x}+4\right)\left(\sqrt{x}+1\right)}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{\left(\sqrt{x}-2\right)\left(7\sqrt{x}-1\right)}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}+\dfrac{24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{-x-5\sqrt{x}-4+7x+7\sqrt{x}-14\sqrt{x}-2+24\sqrt{x}}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{6x+12\sqrt{x}-6}{\left(7\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)