Bài tập cuối chương 6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

Giải các phương trình:

a) \({x^2} - 12x = 0\)

b) \(13{x^2} + 25x - 38 = 0\)

c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)

d) \(x(x + 3) = 27 - (11 - 3x)\)

datcoder
25 tháng 10 lúc 23:56

a) \({x^2} - 12x = 0\)

x(x - 12) = 0

x = 0 hoặc x - 12 = 0

x = 0 hoặc x = 12

Vậy phương trình có 2 nghiệm là x = 0 và x = 12.

b) \(13{x^2} + 25x - 38 = 0\)

Phương trình \(13{x^2} + 25x - 38 = 0\) có a + b + c = 13 + 25 – 38 = 0.

Vậy phương trình có hai nghiệm là \({x_1} = 1\); \({x_2} = \frac{c}{a} =  - \frac{{38}}{{13}}\)

c) \(3{x^2} - 4\sqrt 3 x + 4 = 0\)

Ta có \(\Delta  = {\left( { - 4\sqrt 3 } \right)^2} - 4.3.4 = 0\)

Vậy phương trình có nghiệm kép \({x_1} = {x_2} = \frac{{4\sqrt 3 }}{{2.3}} = \frac{{2\sqrt 3 }}{3}\).

d) \(x(x + 3) = 27 - (11 - 3x)\)

\(\begin{array}{l}{x^2} + 3x = 27 - 11 + 3x\\{x^2} = 16\\x =  \pm 4\end{array}\)

Vậy phương trình có 2 nghiệm là x = \( \pm 4\).