Bài 1. Phương trình quy về phương trình bậc nhất một ẩn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hà Quang Minh

Giải các phương trình:

a) \(3x(x - 4) + 7(x - 4) = 0\);

b) \(5x(x + 6) - 2x - 12 = 0\);

c) \({x^2} - x - (5x - 5) = 0\);

d) \({(3x - 2)^2} - {(x + 6)^2} = 0\).

Hà Quang Minh
29 tháng 3 2024 lúc 14:35

a) \(3x(x - 4) + 7(x - 4) = 0\)

\((x - 4)(3x + 7) = 0\)

\(x - 4 = 0\) hoặc \(3x + 7 = 0\)

\(x = 4\) hoặc \(x = \frac{{ - 7}}{3}\).

Vậy nghiệm của phương trình là \(x = 4\) và \(x = \frac{{ - 7}}{3}\).

b) \(5x(x + 6) - 2x - 12 = 0\)

\(5x(x + 6) - 2(x + 6) = 0\)

\((x + 6)(5x - 2) = 0\)

\(x + 6 = 0\) hoặc \(5x - 2 = 0\)

\(x =  - 6\) hoặc \(x = \frac{2}{5}\).

Vậy nghiệm của phương trình là \(x =  - 6\) và \(x = \frac{2}{5}\).

c) \({x^2} - x - (5x - 5) = 0\)

\(x(x - 1) - 5(x - 1) = 0\)

\((x - 1)(x - 5) = 0\)

\(x - 1 = 0\) hoặc \(x - 5 = 0\)

\(x = 1\) hoặc \(x = 5\).

Vậy nghiệm của phương trình là \(x = 1\) và \(x = 5\).

d) \({(3x - 2)^2} - {(x + 6)^2} = 0\)

\(9{x^2} - 12x + 4 - {x^2} - 12x - 36 = 0\)

\(8{x^2} - 24x - 32 = 0\)

\(8({x^2} - 3x - 4) = 0\)

\({x^2} - 4x + x - 4 = 0\)

\(x(x - 4) + (x - 4) = 0\)

\((x + 1)(x - 4) = 0\)

\(x + 1 = 0\) hoặc \(x - 4 = 0\)

\(x =  - 1\) hoặc \(x = 4\).

Vậy nghiệm của phương trình là \(x =  - 1\) và \(x = 4\).