Gọi vận tốc của ô tô thứ nhất là \(x (x>12)(km/h)\)
Khi đó vận tốc của ô tô thứ hai là \(x−12(km/h)\)
Thời gian ô tô thứ nhất đi từ A đến B là \(\dfrac{120}{x}\) \((h)\)
Thời gian ô tô thứ hai đi từ A đến B là \(\dfrac{120}{x-12}\) \((h)\)
Vì ô tô thứ nhất đến B trước ô tô thứ hai 30 phút = \(\dfrac{1}{2}\) h nên ta có phương trình:
\(\dfrac{120}{x-12}\) - \(\dfrac{120}{x}\) = \(\dfrac{1}{2}\)
\(\Leftrightarrow\) \(240x - 240 ( x-12)=x(x-12)\)
\(\Leftrightarrow\) \(240x-240x+2880 = x^2-12x\)
\(\Leftrightarrow\)\(x ^2 − 12 x − 2880 = 0 \)
\(\Leftrightarrow\)\(( x − 60 ) ( x + 48 ) = 0 \)
\(\Leftrightarrow\)\( \)[\(x-60=0 \) \(\Leftrightarrow\) [\(x = 60\)\(tm\)
\(x+48=0\) \(x=48(tm)\)