Ta có: \(y' = 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2},y' = 0 \Leftrightarrow 2\left( {x - 2} \right){e^x} + {e^x}{\left( {x - 2} \right)^2} = 0\)
\( \Leftrightarrow {e^x}\left( {2 + x - 2} \right)\left( {x - 2} \right) = 0 \Leftrightarrow x.{e^x}\left( {x - 2} \right) \Leftrightarrow x = 0\) hoặc \(x = 2\)
\(y\left( 0 \right) = 4;y\left( 1 \right) = e;y\left( 3 \right) = {e^3},y\left( 2 \right) = 0\)
Do đó, giá trị lớn nhất của hàm số \(y = {\left( {x - 2} \right)^2}.{e^x}\) trên đoạn [1; 3] là \({e^3}\).
Chọn B.
Đúng 0
Bình luận (0)