Quan sát hình vẽ ta thấy:
- Các cạnh tương ứng bằng nhau.
- Các góc tương ứng bằng nhau.
Quan sát hình vẽ ta thấy:
- Các cạnh tương ứng bằng nhau.
- Các góc tương ứng bằng nhau.
Biết hai tam giác trong Hình 4.11 bằng nhau, em hãy chỉ ra các cặp cạnh tương ứng, các cặp góc tương ứng và viết đúng kí hiệu bằng nhau của cặp tam giác đó.
Tương tự, vẽ thêm tam giác \({A^\prime }{B^\prime }{C^\prime }\) có \({A^\prime }{B^\prime } = 5\;{\rm{cm}},{A^\prime }{C^\prime } = 4\;{\rm{cm}},{B^\prime }{C^\prime } = 6\;{\rm{cm}}\).
- Dùng thước đo góc kiểm tra xem các góc tương ứng của hai tam giác A B C và \({A^\prime }{B^\prime }{C^\prime }\) có bằng nhau không.
- Hai tam giác A B C và \({A^\prime }{B^\prime }{C^\prime }\) có bằng nhau không?
Trong Hình 4.19, hãy chỉ ra hai cặp tam giác bằng nhau.
Người ta dùng compa và thước thẳng để vẽ tia phân giác của góc xOy
1.Vẽ đường tròn tâm O, cắt Ox và Oy lần lượt tại A và B.
2.Vẽ đường tròn tâm A bán kính AO và đường tròn tâm B bán kính BO. Hai đường tròn cắt nhau tại điểm M khác điểm O.
3. Vē tia Oz đi qua M.
Em hãy giải thích vì sao tia OM là tia phân giác của góc xOy.
Cho tam giác ABC và DEF như hình 4.18. Trong các khẳng định sau, khẳng định nào đúng?
(1)\(\Delta ABC = \Delta DEF\)
(2) \(\Delta ACB = \Delta EDF\)
(3) \(\Delta BAC = \Delta DFE\)
(4)\(\Delta CAB = \Delta DEF\)
Cho tam giác ABC bằng tam giác DEF (H. 4.13). Biết rằng BC = 4 cm, \(\widehat {ABC} = 40^\circ ;\widehat {ACB} = 60^\circ \). Hãy tính độ dài đoạn thẳng EF và số đo góc EDF.
Trong Hình 4.15, những cặp tam giác nào bằng nhau?
Vẽ tam giác ABC có \(AB = 5\;{\rm{cm}},AC = 4\;{\rm{cm}}\), \(BC = 6\;{\rm{cm}}\) theo các bước sau:
- Dùng thước thẳng có vạch chia vẽ đoạn thẳng \(BC = 6\;{\rm{cm}}\).
- Vẽ cung tròn tâm \(B\) bán kính \(5\;{\rm{cm}}\) và cung tròn tâm \(C\) bán kính \(4\;{\rm{cm}}\) sao cho hai cung tròn cắt nhau tại điểm \(A({\rm{H}}.4.14)\).
- Vẽ các đoạn thẳng A B, A C ta được tam giác ABC.
Cho hình 4.17, biết AB=AD, BC=DC. Chứng minh rằng \(\Delta ABC = \Delta ADC\)