a/ \(\frac{x}{\sqrt{x}-1}\)-\(\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)
= \(\frac{\sqrt{x^3}}{\sqrt{x}\times\left(\sqrt{x}-1\right)}\)- \(\frac{2x-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\frac{\sqrt{x^3}-2x+\sqrt{x}}{\sqrt{x}\times\left(\sqrt{x}-1\right)}\)
= \(\frac{\sqrt{x}\left(\sqrt{x^2}-2x+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}\)
= \(\sqrt{x}-1\)