Giái phương trình :
a,\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
b,\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
c,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
d,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
Bài1: giải các phương trình sau: 1)\(\frac{2x-5}{x+5}=3\) 2)\(\frac{4}{x+1}=\frac{3}{x-2}\) 3) \(\frac{5}{2x-3}=\frac{1}{x-4}\) Bài2: giải các phương trình sau: 1)\(\frac{1}{x-1}+\frac{2}{x+1}=\frac{5x-3}{xmũ2-1}\) 2) \(\frac{x+2}{x-2}-\frac{1}{X}=\frac{2}{xmũ2-2x}\) 3) \(\frac{5}{x-3}-\frac{3}{x+3}=\frac{3x}{xmũ2-9}\)
a.\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
b.\(\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\)
c.\(\frac{12}{8-x^3}=1+\frac{1}{x+2}\)
d.\(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)
e.\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
Giai phuong trinh:
a)\(\frac{4+9x}{9x^21}=\frac{3}{3x+1}-\frac{2}{1-3x}\)
b)\(\frac{2x-3}{x+1}+\frac{x^2-5x+10}{\left(x+1\right)\left(x-3\right)}=\frac{3x-5}{x-3}\)
c)\(\frac{x\left(x+4\right)}{2x-3}=\frac{x^2+4}{2x-3}+1-\frac{2}{3-2x}\)
d)\(\frac{1}{x+2}+\frac{x}{x-3}=1-\frac{5x}{\left(x+2\right)\left(3-x\right)}-\frac{1}{x+2}\)
Bài 1:Giải Phương trình
d) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
e)\(\frac{6}{x^{2^{ }}-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
g) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
h) \(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
a) \(\frac{1}{2x-3}-\frac{3}{x\left(2x-3\right)}=\frac{5}{x}\)
b)\(\frac{x+2}{x-2}-\frac{1}{x}=\frac{2}{x\left(x-2\right)}\)
c)\(\frac{x +1}{x-2}+\frac{x-1}{x +2}=\frac{2\left(x^{2^{ }}+2\right)}{x^2-4}\)
d)(2x+3)\(\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)
Giari các phương trình sau.
a. \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)
b. \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
c. \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
d. \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
e. \(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
f. \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
g. \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
h. \(\frac{x-1}{x}-\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)
\(\frac{x+2}{x-2}-\frac{5}{x}=\frac{8}{x^2-2x}-\frac{3}{x-1}=\frac{3x+2}{1-x^2}-\frac{4}{x+1}\)
f.\(\frac{3}{x^2+x-2}-\frac{1}{x-1}=\frac{-7}{x+2}\)
g.\(\frac{2}{-x^2+6x-8}-\frac{x-1}{x-2}=\frac{x+3}{x-4}\)
h.\(\frac{2}{x^3-x^2-x+1}=\frac{3}{1-x^2}-\frac{1}{x-1}\)
i.\(\frac{x+2}{x-2}-\frac{2}{x^2-2x}=\frac{1}{x}\)
j.\(\frac{5}{-x^2+5x-6}+\frac{x+3}{2-x}=0\)
Giải phương trình:
a,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
b,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)