Giari các phương trình sau.
a. \(\frac{1}{x}+\frac{1}{x+10}=\frac{1}{12}\)
b. \(\frac{x+3}{x-3}-\frac{1}{x}=\frac{3}{x\left(x-3\right)}\)
c. \(\frac{3}{x+2}-\frac{2}{x-2}+\frac{8}{x^2-4}=0\)
d. \(\frac{3}{x+2}-\frac{2}{x-3}=\frac{8}{\left(x-3\right)\left(x+2\right)}\)
e. \(\frac{x}{2x+6}-\frac{x}{2x+2}=\frac{3x+2}{\left(x+1\right)\left(x+3\right)}\)
f. \(\frac{x}{x+1}-\frac{2x-3}{1-x}=\frac{3x^2+5}{x^2-1}\)
g. \(\frac{5}{x+7}+\frac{8}{2x+14}=\frac{3}{2}\)
h. \(\frac{x-1}{x}-\frac{1}{x+1}=\frac{2x-1}{x^2+x}\)
\(1.\frac{1}{x^2-2x+2}+\frac{2}{x^2-2x+3}=\frac{6}{x^2-2x+4}
\)
2.\(\frac{2x^4}{\left(x+1\right)^2}-\frac{5x^2}{x+1}+2=0\)
3.\(\left(x+\frac{1}{x}\right)^2-6\left(x+\frac{1}{x}\right)+8=0\)
4.\(\left(x^2+\frac{1}{x^2}\right)-4\left(x+\frac{1}{x}\right)+6=0\)
5.\(\frac{2x}{3x^2-x+2}-\frac{7x}{3x^2+5x+2}=1\)
Giái phương trình :
a,\(\frac{6x+1}{x^2-7x+10}+\frac{5}{x-2}=\frac{3}{x-5}\)
b,\(\frac{2}{x^2-4}-\frac{x-1}{x\left(x-2\right)}+\frac{x-4}{x\left(x+2\right)}=0\)
c,\(\frac{1}{3-x}-\frac{1}{x+1}=\frac{x}{x-3}-\frac{\left(x-1\right)^2}{x^2-2x-3}\)
d,\(\frac{2}{x+2}-\frac{2x^2+16}{x^3+8}=\frac{5}{x^2-2x+4}\)
a.\(\frac{x+1}{x-1}-\frac{x-1}{x+1}=\frac{16}{x^2-1}\)
b.\(\frac{12}{x^2-4}-\frac{x+1}{x-2}+\frac{x+7}{x+2}=0\)
c.\(\frac{12}{8-x^3}=1+\frac{1}{x+2}\)
d.\(\frac{x+25}{2x^2-50}-\frac{x+5}{x^2-5x}=\frac{5-x}{2x^2+10x}\)
e.\(\frac{4}{x^2+2x-3}=\frac{2x-5}{x+3}-\frac{2x}{x-1}\)
\(\frac{4}{-25x^2+20x-3}=\frac{3}{5x-1}-\frac{2}{5x-3}\)
\(\frac{1}{x^2-3x+2}+\frac{1}{x^2-5x+6}-\frac{2}{x^2-4x+3}=0\)
\(\frac{x-1}{2x^2-4x}-\frac{7}{8x}=\frac{5-x}{4x^2-8x}-\frac{1}{8x-16}\)
\(\frac{1}{x^2+9x+20}+\frac{1}{x^2+11x+30}+\frac{1}{x^2+13x+42}=\frac{1}{18}\)
Bài 1:Giải Phương trình
d) \(\frac{3}{2x-16}+\frac{3x-20}{x-8}+\frac{1}{8}=\frac{13x-102}{3x-24}\)
e)\(\frac{6}{x^{2^{ }}-1}+5=\frac{8x-1}{4x+4}-\frac{12x-1}{4-4x}\)
g) \(\frac{\frac{x+1}{x-1}-\frac{x-1}{x+1}}{1+\frac{x+1}{x-1}}=\frac{1}{2}\)
h) \(\frac{x+4}{x^2-3x+2}-\frac{x+1}{x^2-4x+3}=\frac{2x+5}{x^2-4x+3}\)
\(\frac{4}{x^2-3x+2}-\frac{3}{2x^2-6x+1}+1=0\)
\(\frac{1}{x-1}+\frac{2}{x-2}+\frac{3}{x-3}=\frac{6}{x-6}\)
Giai phuong trinh:
a)\(\frac{4+9x}{9x^21}=\frac{3}{3x+1}-\frac{2}{1-3x}\)
b)\(\frac{2x-3}{x+1}+\frac{x^2-5x+10}{\left(x+1\right)\left(x-3\right)}=\frac{3x-5}{x-3}\)
c)\(\frac{x\left(x+4\right)}{2x-3}=\frac{x^2+4}{2x-3}+1-\frac{2}{3-2x}\)
d)\(\frac{1}{x+2}+\frac{x}{x-3}=1-\frac{5x}{\left(x+2\right)\left(3-x\right)}-\frac{1}{x+2}\)
26 ,giải phương trình.
a,\(\frac{1}{x-1}+\frac{2}{x^2+x+1}=\frac{3x^2}{x^3-1}\)
b,\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{\left(x+1\right)\left(x-3\right)}\)
c,\(\frac{x-1}{x+2}+\frac{x-2}{x+1}=\frac{2\left(x^2+2\right)}{x^2-4}\)
d,\(\frac{3}{5x-1}+\frac{2}{3-5x}=\frac{4}{\left(1-5x\right)\left(x-3\right)}\)