Bài 3. Đường tiệm cận của đồ thị hàm số

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Quoc Tran Anh Le

Đường thẳng \(x = 1\) có phải là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\) không?

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left( {x + 3} \right) = 4\)

\(\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 2x - 3}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 3} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \left( {x + 3} \right) = 4\)

Do đó, đường thẳng \(x = 1\) không là tiệm cận đứng của đồ thị hàm số \(y = \frac{{{x^2} + 2x - 3}}{{x - 1}}\).