Bài 16. Vị trí tương đối của đường thẳng và đường tròn

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
datcoder

(Dựa vào hình vẽ có được sau HĐ3). Bằng cách xét hai tam giác OMA và OMB, chứng minh rằng:

a) MA = MB;

b) MO là tia phân giác của góc AMB;

c) OM là tia phân giác của góc AOB.

datcoder
21 tháng 10 lúc 21:20

a) Xét hai tam giác vuông OAP và OBP có:

OA = OB

OP chung

Vậy \(\Delta {\rm{OAP}} = \Delta {\rm{OBP}}\) (cạnh huyền – cạnh góc vuông)

Suy ra: PA = PB (hai cạnh tương ứng)

b) Vì \(\Delta {\rm{OAP}} = \Delta {\rm{OBP}}\) (câu a) nên \(\widehat {{\rm{OAP}}} = \widehat {{\rm{OBP}}}\) (hai góc tương ứng)

Suy ra PO là tia phân giác của góc APB.

c) Vì \(\Delta {\rm{OAP}} = \Delta {\rm{OBP}}\) (câu a) nên \(\widehat {{\rm{AOP}}} = \widehat {{\rm{BOP}}}\) (hai góc tương ứng)

Suy ra OP là tia phân giác của góc AOB.