1. Khối lượng (Volume)
- Dữ liệu lớn có kích thước khổng lồ, thường tính bằng terabyte, petabyte hoặc exabyte.
- Ví dụ: dữ liệu giao dịch của một công ty thương mại điện tử, dữ liệu y tế của một bệnh viện, v.v.
2. Tốc độ (Velocity)
- Dữ liệu lớn được tạo ra và cập nhật liên tục, gần như theo thời gian thực.
- Ví dụ: dữ liệu từ mạng xã hội, dữ liệu giao dịch chứng khoán, v.v.
3. Đa dạng (Variety)
- Dữ liệu lớn bao gồm nhiều loại dữ liệu khác nhau, như dữ liệu có cấu trúc, dữ liệu bán cấu trúc và dữ liệu phi cấu trúc.
- Ví dụ: dữ liệu văn bản, dữ liệu hình ảnh, dữ liệu video, v.v.
4. Tính xác thực (Veracity)
- Dữ liệu lớn có thể chứa các lỗi và thiếu chính xác.
- Việc đảm bảo tính chính xác của dữ liệu là một thách thức lớn.
5. Giá trị (Value)
- Dữ liệu lớn có tiềm năng mang lại giá trị to lớn cho nhiều lĩnh vực khác nhau.
- Việc phân tích và khai thác dữ liệu hiệu quả có thể giúp doanh nghiệp tăng doanh thu, giảm chi phí, cải thiện hiệu quả hoạt động và đưa ra quyết định sáng suốt.