điểm trung bình môn tin có trên 6.5 không?
điểm trung bình môn tin có trên 6.5 không?
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a. Hãy xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp đó ?
Hình tứ diện đều ABCD có cạnh bằng a và có đường cao AH. Gọi O là trung điểm của AH. Xác định tâm và bán kính của mặt cầu ngoại tiếp tứ diện OBCD ?
tìm tâm và bán kính mặt cầu ngoại tiếp hình lăng trụ tam giác có tất cả các cạnh bằng a
Hình chóp S.ABC là hình chóp tam giác đều, có cạnh đáy bằng a và cạnh bên bằng \(a\sqrt{2}\). Một mặt cầu đi qua đỉnh A và tiếp xúc với hai cạnh SB, SC tại trung điểm của mỗi cạnh
a) Chứng minh rằng mặt cầu đó đi qua trung điểm của AB và AC
b) Gọi giao điểm thứ hai của mặt cầu với đường thẳng SA là D. Tính độ dài của AD và SD
Tìm tập hợp tất tả các điểm M trong không gian luôn luôn nhìn đoạn thẳng AB cố định dưới một góc vuông ?
Cho mặt cầu tâm O, bán kính r. Gọi \(\left(\alpha\right)\) là mặt phẳng cách tâm O một khoảng h \(\left(0< h< r\right)\) và cắt mặt cầu theo đường tròn (C). Đường thẳng d đi qua một điểm A cố định trên (C) và vuông góc với mặt phẳng \(\left(\alpha\right)\) cắt mặt cầu tại một điểm B. Gọi CD là một đường kính di động của (C)
a) Chứng minh các tổng \(AD^2+BC^2\) và \(AC^2+BD^2\) có giá trị không đổi
b) Với vị trí nào của CD thì diện tích tam giác BCD lớn nhất
c) Tìm tập hợp các điểm H, hình chiếu vuông góc của B trên CD khi CD chuyển động trên đường tròn (C)
Cho hình chóp A.ABC có 4 đỉnh đều nằm trên một mặt cầu, SA = a, SB = b, SC = c và ba cạnh SA, SB, SC đôi một vuông góc. Tính diện tích mặt cầu và thể tích khối cầu được tạo nên bởi mặt cầu đó ?
Trong mặt phẳng \(\left(\alpha\right)\) cho hình vuông ABCD có cạnh bằng a. Trên đường thẳng \(Ax\) vuông góc \(\left(\alpha\right)\) ta lấy một điểm S tùy ý, dựng mặt phẳng \(\left(\beta\right)\) đi qua A và vuông góc với đường thẳng SC. Mặt phẳng \(\left(\beta\right)\) cắt SB, SC, SD lần lượt tại B', C' , C'.
a) Chứng minh rằng các điểm A, B, C, D, B', C', D' luôn luôn thuộc một mặt cầu cố định
b) Tính diện tích của mặt cầu đó và tính thể tích khối cầu được tạo thành
Hình chóp S.ABCD có SA = a là chiều cao của hình chóp và đáy ABCD là hình thang vuông tại A và B có AB = BC = a và AD = 2a. Gọi E là trung điểm của cạnh AD. Xác định tâm và bán kính mặt cầu ngoại tiếp hình chóp S.CDE ?