Khoảng biến thiên: \(R = 7,5 - 5 = 2,5\)
Cỡ mẫu: \(n = 2 + 8 + 15 + 10 + 5 = 40\)
Tứ phân vị thứ nhất của mẫu số liệu là: \(\frac{{{x_{10}} + {x_{11}}}}{2}\), vì \({x_{10}} \in \left[ {5,5;6} \right),{x_{11}} \in \left[ {6;6,5} \right)\) nên tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là: \({Q_1} = 6\).
Tứ phân vị thứ ba của mẫu số liệu là: \(\frac{{{x_{30}} + {x_{31}}}}{2}\) thuộc nhóm \(\left[ {6,5;7} \right)\) nên tứ phân vị thứ ba của mẫu số liệu ghép nhóm là: \({Q_3} = 6,5 + \frac{{\frac{{3.40}}{4} - \left( {2 + 8 + 15} \right)}}{{10}}.0,5 = 6,75\).
Khoảng biến thiên: \({\Delta _Q} = {Q_3} - {Q_1} = 6,75 - 6 = 0,75\)
Chọn giá trị đại diện cho các nhóm số liệu, ta có:
Thời gian (giờ) | [5; 5,5) | [5,5; 6) | [6; 6,5) | [6,5; 7) | [7; 7,5) |
Giá trị đại diện | 5,25 | 5,75 | 6,25 | 6,75 | 7,25 |
Số chiếc điện thoại (tần số) | 2 | 8 | 15 | 10 | 5 |
Thời gian trung bình nghe nhạc liên tục của điện thoại là: \(\overline x = \frac{1}{{40}}\left( {5,25.2 + 5,75.8 + 6,25.15 + 6,75.10 + 7,25.5} \right) = 6,35\)
Phương sai của mẫu số liệu là:
\({s^2} = \frac{1}{{40}}\left( {5,{{25}^2}.2 + 5,{{75}^2}.8 + 6,{{25}^2}.15 + 6,{{75}^2}.10 + 7,{{25}^2}.5} \right) - 6,{35^2} = 0,2775\)
Độ lệch chuẩn của mẫu số liệu là: \(\sqrt {0,2775} = \frac{{\sqrt {111} }}{{20}} \approx 0,53\)