ΔABC vuông cân tại A, AH⊥BC. Lấy M tùy ý trên BC. Vẽ các đường thẳng song song với AC và AB cắt AB tại D; cắt AC tại E. C/m góc DHE = 90 độ
ΔABC vuông cân tại A, AH⊥BC. Lấy M tùy ý trên BC. Vẽ các đường thẳng song song với AC và AB cắt AB tại D; cắt AC tại E. C/m góc DHE = 90 độ
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI=AK.
a)CMR: I đối xứng với K qua H.
b)CMR: BIKC là hình thang cân.
c) Gọi giao điểm của BK và IC là G. GH có phảI trục đối xứng của hình thang cân BIKC không? Tại sao?
Cho tam giác ABC cân tại A, đường cao AH. Trên cạnh AB lấy điểm I, trên cạnh AC lấy điểm K sao cho AI=AK.
a)CMR: I đối xứng với K qua H.
b)CMR: BIKC là hình thang cân.
c) Gọi giao điểm của BK và IC là G. GH có phảI trục đối xứng của hình thang cân BIKC không? Tại sao?
Cho ΔABC vuông cân tại A. Trên AB lấy D. Trên AC lấy E sao cho AD = AE. Qua A và D kẻ các đường thẳng vuông góc với BE cắt BC ở I và K. Gọi M là giao của DK và AC.
C/m : a) ΔBAE = ΔCAD.
b) ΔMCD cân
c) IK = IC
Cho ΔABC vuông cân tại A. Trên AB lấy D. Trên AC lấy E sao cho AD = AE. Qua A và D kẻ các đường thẳng vuông góc với BE cắt BC ở I và K. Gọi M là giao của DK và AC.
C/m : a) ΔBAE = ΔCAD.
b) ΔMCD cân
c) IK = IC
Bài 8: ChoABC cân tại A, đường cao AH. I là trung điểm AB. Vẽ M đối xứng với H qua I.
a) Biết AH = 12cm, HB = 9cm. Tính HI.
b) Tứ giác AHBM là hình gì?
c) Tứ giác ACHM là hình gì? Vì sao?
d) Lấy E là trung điểm của AC. CM: AH, CM, IE đồng quy
Cho ΔABC nhọn, đường cao AD và BE cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F.
a. Tứ giác AFBD là hình gì? Vì sao?
b. Gọi K là giao của AB và DF, I là trung điểm HC. Chứng minh E và D đối xứng với nhau qua KI
Cho ΔABC nhọn. Đường cao AD, B và E cắt nhau tại H. Đường thẳng vuông góc với AD tại A và đường thẳng vuông góc với BD tại B cắt nhau tại F
a) AFBD là hình gì ? Vì sao ?
b) Gọi K là gian AB và FD : I trung điểm HC. C/m E và D đối xứng với nhau qua KI.