M=\(\dfrac{x+5}{\sqrt{x}+2}=\dfrac{2\left(x+5\right)}{2\left(\sqrt{x}+2\right)}=\dfrac{2x+10}{2\sqrt{x}+4}\left(DK:x\ge0\right)\)
= \(\dfrac{x+4\sqrt{x}+4+x-4\sqrt{x}+4+2}{2\left(\sqrt{x}+2\right)}\)
= \(\dfrac{\left(\sqrt{x}+2\right)^2+\left(\sqrt{x}-2\right)^2+2}{2\left(\sqrt{x}+2\right)}\)
= \(\dfrac{\sqrt{x}+2}{2}+\dfrac{\left(\sqrt{x}-2\right)^2+2}{2\left(\sqrt{x}+2\right)}\)
De M min thi \(\left(\sqrt{x}-2\right)^2+2Min\)
ma \(\left(\sqrt{x}-2\right)^2+2\ge2\)
Dau = khi : x=4 => M= \(\dfrac{9}{4}\)
Mk ghi nhầm đề ạ sử lại nka :
Gía trị nhỏ nhất của bt \(M=\dfrac{x+5}{\sqrt{x}+2}\) là bn?