a: ΔABC đồng dạng với ΔDEF
=>AB/DE=BC/EF=AC/DF=k và góc B=góc E; góc BAC=góc EDF; góc C=góc F
=>AB/DE=BM/EN
mà gó B=E
nên ΔABM đồng dạng vơi ΔDEN
=>AM/DN=AB/DE=k
b: góc A=góc D
=>góc BAM=góc EDN
Xét ΔABM và ΔDEN có
góc BAM=góc EDN
góc ABM=góc DEN
=>ΔABM đồng dạng với ΔDEN
=>AM/EN=AB/DE=k
c: Xét ΔABM vuông tại M và ΔDEN vuông tại N có
góc B=góc E
=>ΔABM đồng dạng với ΔDEN
=>AM/EN=AB/DE=k
d: AB/DE=AC/DF=BC/EF=k
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{AB}{DE}=\dfrac{AC}{DF}=\dfrac{BC}{EF}=\dfrac{AB+AC+BC}{DE+DF+EF}=\dfrac{DE\cdot k+DF\cdot k+EF\cdot k}{DE+DF+EF}=k\)
=>ĐPCM