Cho đa thức P(x) với hệ số nguyên thỏa mãn P(2012)=P(2013)=P(2014)=2013. CMR đa thức P(x) -2014 không có nghiệm nguyên...
cho mọi số nguyên dương n>2 cmr \(\dfrac{1}{3}\)\(\dfrac{ }{ }\). \(\dfrac{4}{6}.\dfrac{7}{9}.\dfrac{10}{12}........\dfrac{3n-2}{3n}.\dfrac{3n+1}{3n+3}< \dfrac{1}{3\sqrt{n+1}}\)
Cho a,b,c là các số thực không âm thỏa mãn: 0≤a≤b≤c≤1. Tìm giá trị lớn nhất của biểu thức:
Q= a2(b-c)+b2(c-b)+c2(1-c)
Chứng minh không tồn tại số nguyên n thỏa mãn :
\(\left(2020^{2020}+1\right)⋮\left(n^3+2018n\right)\)
Số giá trị nguyên của x để biểu thức \(\dfrac{2\sqrt{x}-7}{\sqrt{x}-1}\) có giá trị nguyên là?
cho a,b,c là các số thực thỏa mãn a,b≥0;0≤c≤1 và a2+b2+c2 =3.Tìm giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P=ab+bc+ca+3(a+b+c)
Cho hàm số y = \(\sqrt{3-m}\left(x+5\right)\) là hàm số bậc nhất khi nào ?
Trên cùng một mặt phẳng Oxy, đồ thị của hàm số y = \(\dfrac{1}{2}x-2\) và y = \(\dfrac{3}{2}\)x - 2 có tọa độ là ?
\(P=\dfrac{2\sqrt{x}-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}-2\right)}+\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}-\dfrac{\sqrt{x}+3}{\sqrt{x}-2}\)
a) rút gọn P
b) tìm các giá trị nguyên của x để P có giá trị nguyên
b)tìm giá trị nguyên của x để A có giá trị nguyên