Đề phải là với \(n\in N\)* chu:
\(\dfrac{n^7+n^2+1}{n^8+n+1}=\dfrac{\left(n^7-n\right)+\left(n^2+n+1\right)}{\left(n^8-n^2\right)+\left(n^2+n+1\right)}\)
\(=\dfrac{n\left(n^6-1\right)+\left(n^2+n+1\right)}{n^2\left(n^6-1\right)+\left(n^2+n+1\right)}=\dfrac{n\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}{n^2\left(n^3-1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}\)\(=\dfrac{n\left(n-1\right)\left(n^2+n+1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}{n^2\left(n-1\right)\left(n^2+n+1\right)\left(n^3+1\right)+\left(n^2+n+1\right)}\)
\(=\dfrac{\left(n^2+n+1\right)[\left(n^2-n\right)\left(n^3+1\right)+1]}{\left(n^2+n+1\right)[\left(n^3-n^2\right)\left(n^3+1\right)+1]}\)
\(=\dfrac{\left(n^2+n+1\right)\left(n^5-n^4+n^2-n+1\right)}{\left(n^2+n+1\right)\left(n^6-n^5+n^3-n^2\right)}\)
Do cả tử và mẫu đều có chung thừa số \(n^2+n+1>1\Rightarrow dpcm\)
phân tích đa thức thành nhân t của mẫu va tử,rồi có nhân tử chung của mẫu và tử số là x2+x+1