\(8^8+2^{20}\\ =\left(2^3\right)^8+2^{20}\\ =2^{24}+2^{20}\\ =2^{20}\left(2^4+1\right)\\ =2^{20}.17⋮17\left(đpcm\right)\)
\(8^8+2^{20}\\ =\left(2^3\right)^8+2^{20}\\ =2^{24}+2^{20}\\ =2^{20}\left(2^4+1\right)\\ =2^{20}.17⋮17\left(đpcm\right)\)
P=1/2.3/4.5/6.....399/400.Chung to rang P nho hon1/20
1) \(\dfrac{5}{13}\) +\(\dfrac{-5}{17}\) + \(\dfrac{-20}{41}\) + \(\dfrac{8}{13}\) +\(\dfrac{-21}{41}\)
2) \(\dfrac{1}{5}\) + \(\dfrac{-2}{9}\) + \(\dfrac{-7}{9}\) + \(\dfrac{4}{5}\) +\(\dfrac{16}{17}\)
3) \(\dfrac{2}{3.5}\) + \(\dfrac{2}{5.7}\) +\(\dfrac{2}{7.9}\) +....................+ \(\dfrac{2}{99.101}\)
cho a+b=c+d
va a^2+b^2=c^2+d^2
chung minh rang
a^2018+b^2018=c^2018+d^2018
a) ( 21/22 + 3/5 + -21/22 ) : 1 2/5 9/17 x 8/5 - 9/17 x 3/5 + 8/17
X - 3/10 = 7/15 x 3/15
3+x/7+y=3/7 và x+y=20
A=2*4+2*4*8+4*8*16+8*16*32/3*4+2*6*8+4*12*16+8*24*32
j) \(\dfrac{-3}{4}\) + \(\dfrac{2}{7}\) + \(\dfrac{-1}{4}\) +\(\dfrac{3}{5}\) +\(\dfrac{5}{7}\)
k) \(\dfrac{-2}{17}\)+ \(\dfrac{15}{23}\) + \(\dfrac{-15}{17}\) + \(\dfrac{4}{19}\) +\(\dfrac{8}{23}\)
8/15-3/10+7/20 3/5-2/3+1/4/5:4/3 7/7/8-5/5/6
Cho : P=\(2+2^2+2^3+2^4+2^5+2^6+2^7+2^8+2^9+2^{10}\)
Chứng minh P chia hết cho 31
tính bằng cách hợp lí :
a . ( 2 + 3/5 ) : ( 2/5 -1/9 )
b . ( -2/7 + 1/2 ) : 3/28
c . ( 3/8 - 3/4 ) : ( -9/16 + 9/-8 )
d . -11/24 . 17/221 . -24/11 . ( -7 )