cho 6 điểm a b c d e f chứng minh vecto AC+ vecto BD+ vecto EF=vecto AF+ vecto BC+ vecto ED
Cho tam giác ABC. Đặt vecto CA = vecto a, vecto CB = vecto b. Lấy các điểm A’ và B’ sao cho vecto CA’ = -2 vecto a, vecto CB’ = 2 vecto b. Gọi I là giao điểm của A’B và B’A. Giả sử vecto CI = m. vecto a + n. vecto b. Khi đó m/n bằng?
Cho tam giác ABC và 1 điểm M. Chứng minh M\(_{_{ }\in}\)BC thì tồn tại 2 số \(\alpha\) và \(\beta\) sao cho \(\alpha\)+\(\beta\)=1 và vecto AM= \(\alpha\) vecto AB+ \(\beta\) vecto AC
1: cho hbh ABCD , M tùy ý . CM : vecto MA + MC = vecto MB + MD
2: cho tam giác ABC bên ngoài tam giác vẽ các hbh ABIJ , BCPQ , CARS chứng minh vecto RJ + IQ+PS = vecto ko
3: cho tam giac ABC đều cạnh a tính
a) độ dài vecto AB+ BC
b) độ dài vecto AB + AC
1. Cho tam giác ABC , M là trung điểm AB , N thuộc cạnh AC sao cho NC=2NA , K là trung điểm MN
a) chứng minh vecto KA=1/4AB+1/6AC
b) gọi D là trung điểm BC chứng minh vecto KD=1/4AB+1/3AC
2. Cho tam giác ABC trung tuyến AM , I là trung điểm AM , K là điểm trên cạnh AC sao cho AK=1/3AC
a) phân tích vecto BI , BK theo vecto a=vecto BA vecto b= vecto BC
b) chứng minh B,I,K thẳng hàng
1, Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với G qua . B.
a, Chứng minh: vecto AD = 5/3 vecto AB - 1/3 vecto AC
b, AD cắt BC tại E. Tính BE/BC
2 Cho tam giác ABC có trọng tâm G. Gọi D là điểm đối xứng với B qua G.
a, Chứng minh vecto AD = -(1/3) vecto AB + 2/3 vecto AC.
b, AD cắt BC tại E. Tính BE/BC.
GIÚP VỚI Ạ ! MÌNH CẦN GẤP Ạ!
cho tứ giác ABCD gọi I.J lần lượt là trung điểm của AB.BC.CD.DA và M . O là điểm bất kì chứng minh :
a,vecto ad + vecto bc = 2x vecto IJ
b, vecto OA + OB + OC + OD = 0
C. vecto MA + MB + MC + MD =4MO
cho tam giác ABC,M thuộc cạnh AB sao choMB=2MA.N là điểm thỏa:VECTO NA+NC=VECTO KHÔNG,I LÀ TRUNG ĐIỂM MN.
A)CHỨNG MINH: VECTO BI=-5/6 VECTO AB+1/4 VECTO AC
B)GỌI H LÀ ĐIỂM THỎA: VECTO AH=3/10 VECTO AC.CHỨNG MINH BI QUA H
Cho tam giác ABC. Gọi A', B', C', lần lượt là trung điểm của BC, CA, AB. Chứng minh rằng: Vecto AA' + Vecto BB' + Vecto CC' = 0